A New Ribo-Type of Wangodinium sinense from Germination of Resting Cysts Isolated from Ballast Tank Sediments of Incoming Ships to China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Cultures Establishment
2.2. Light Microscopy Observation
2.3. Scanning Electron Microscopy (SEM) Observation
2.4. DNA Extraction, PCR Amplification, and Sequencing
2.5. Phylogenetic Analyses
2.6. Bioassays for Possible Effects on Aquatic Organisms
3. Results
3.1. Phylogenetic Analysis
3.2. Morphology of Resting Cyst and Vegetative Cell of Wangodinium sinense
3.3. Toxicity of Wangodinium sinense to Rotifer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bailey, S.A. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat. Ecosyst. Health Manag. 2015, 18, 261–268. [Google Scholar] [CrossRef]
- Carlton, J.T. Trans-oceanic and interoceanic dispersal of coastal marine organisms—The biology of ballast water. Oceanogr. Mar. Biol. 1985, 23, 313–371. [Google Scholar]
- Maglic, L.; Zec, D.; Francic, V. Ballast water sediment elemental analysis. Mar. Pollut. Bull. 2016, 103, 93–100. [Google Scholar] [CrossRef]
- Maglic, L.; Francic, V.; Zec, D.; David, M. Ballast water sediment management in ports. Mar. Pollut. Bull. 2019, 147, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Z.; Dickman, M. Mid-ocean exchange of container vessel ballast water. 1: Seasonal factors affecting the transport of harmful diatoms and dinoflagellates. Mar. Ecol. Prog. Ser. 1999, 176, 243–251. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Hallegraeff, G.M.; Melia, G.; Cohen, A.; Bowers, H.A.; Oldach, D.W.; Parrow, M.W.; Sullivan, M.J.; Zimba, P.V.; Allen, E.H.; et al. Phytoplankton and bacterial assemblages in ballast water of US military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae 2007, 6, 486–518. [Google Scholar] [CrossRef]
- Klein, G.; MacIntosh, K.; Kaczmarska, I.; Ehrman, J.M. Diatom survivorship in ballast water during trans-Pacific crossings. Biol. Invasions 2010, 12, 1031–1044. [Google Scholar] [CrossRef]
- Ribeiro, S.; Berge, T.; Lundholm, N.; Andersen, T.J.; Abrantes, F.; Ellegaard, M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat. Commun. 2011, 2, 311. [Google Scholar] [CrossRef]
- Klouch, K.Z.; Schmidt, S.; Andrieux-Loyer, F.; Le Gac, M.; Hervio-Heath, D.; Qui-Minet, Z.N.; Quéré, J.; Bigeard, E.; Guillou, L.; Siano, R. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). Fems Microbiol. Ecol. 2016, 92, fiw101. [Google Scholar] [CrossRef]
- Klein, G.; Kaczmarska, I.; Ehrman, J.M. The diatom Chaetoceros in ships’ ballast waters—Survivorship of stowaways. Acta Bot. Croat. 2009, 68, 325–338. [Google Scholar]
- Casas-Monroy, O.; Roy, S.; Rochon, A. Ballast sediment-mediated transport of non-indigenous species of dinoflagellates on the East Coast of Canada. Aquat. Invasions 2011, 6, 231–248. [Google Scholar] [CrossRef]
- Shang, L.X.; Hu, Z.X.; Deng, Y.Y.; Liu, Y.Y.; Zhai, X.Y.; Chai, Z.Y.; Liu, X.H.; Zhan, Z.F.; Dobbs, F.C.; Tang, Y.Z. Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms 2019, 7, 250. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Bolch, C.J. Transport of diatom and dinoflagellate resting spores in ships ballast water—Implications for plankton biogeography and aquaculture. J. Plankton Res. 1992, 14, 1067–1084. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Z.; Gu, H.; Wang, Z.; Liu, D.; Wang, Y.; Lu, D.; Hu, Z.; Deng, Y.; Shang, L.; Qi, Y. Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China. Harmful Algae 2021, 107, 102050. [Google Scholar] [CrossRef]
- Yu, Z.M.; Tang, Y.Z.; Gobler, C.J. Harmful algal blooms in China: History, recent expansion, current status, and future prospects. Harmful Algae 2023, 129, 102499. [Google Scholar] [CrossRef]
- Wang, D.Z.; Zhang, S.F.; Zhang, H.; Lin, S.J. Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives. Harmful Algae 2021, 107, 102079. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Hallegraeff, G.; Enevoldsen, H.; Zingone, A. Global harmful algal bloom status reporting. Harmful Algae 2021, 102, 101992. [Google Scholar] [CrossRef]
- Smayda, T.J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 1997, 42, 1137–1153. [Google Scholar] [CrossRef]
- Hyun, B.G.; Shin, K.S.; Jang, M.C.; Jang, P.G.; Lee, W.J.; Park, C.; Choi, K.H. Potential invasions of phytoplankton in ship ballast water at South Korean ports. Mar. Freshw. Res. 2016, 67, 1906–1917. [Google Scholar] [CrossRef]
- Garrett, M.J.; Puchulutegui, C.; Selwood, A.I.; Wolny, J.L. Identification of the harmful dinoflagellate Vulcanodinium rugosum recovered from a ballast tank of a globally traveled ship in Port Tampa Bay, Florida, USA. Harmful Algae 2014, 39, 202–209. [Google Scholar] [CrossRef]
- Anderson, D.M.; Morel, F.M.M. The seeding of two red tide blooms by the germination of benthic Gonyaulax tamarensis hypnocysts. Estuar. Coast. Mar. Sci. 1979, 8, 279–293. [Google Scholar] [CrossRef]
- Bravo, I.; Figueroa, R.I. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2014, 2, 11–32. [Google Scholar] [CrossRef] [PubMed]
- von Dassow, P.; Montresor, M. Unveiling the mysteries of phytoplankton life cycles: Patterns and opportunities behind complexity. J. Plankton Res. 2011, 33, 3–12. [Google Scholar] [CrossRef]
- Shang, L.; Hu, Z.; Deng, Y.; Li, J.; Liu, Y.; Song, X.; Zhai, X.; Zhan, Z.; Tian, W.; Xu, J.; et al. Transoceanic ships as a source of alien dinoflagellate invasions of inland freshwater ecosystems. Harmful Algae 2024, 135, 102630. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Bolch, C.J. Transport of toxic dinoflagellate cysts via ships’ ballast water. Mar. Pollut. Bull. 1991, 22, 27–30. [Google Scholar] [CrossRef]
- Smayda, T.J. Reflections on the ballast water dispersal—Harmful algal bloom paradigm. Harmful Algae 2007, 6, 601–622. [Google Scholar] [CrossRef]
- Shang, L.X.; Zhai, X.Y.; Tian, W.; Liu, Y.Y.; Han, Y.C.; Deng, Y.Y.; Hu, Z.X.; Tang, Y.Z. Pseudocochlodinium profundisulcus resting cysts detected in the ballast tank sediment of ships arriving in the ports of China and North America and the implications in the species’ geographic distribution and possible invasion. Int. J. Environ. Res. Public Health 2022, 19, 299. [Google Scholar] [CrossRef]
- Hamer, J.P.; Lucas, I.A.N.; McCollin, T.A. Harmful dinoflagellate resting cysts in ships’ ballast tank sediments: Potential for introduction into English and Welsh waters. Phycologia 2001, 40, 246–255. [Google Scholar] [CrossRef]
- Luo, Z.H.; Yang, W.D.; Leaw, C.P.; Pospelova, V.; Bilien, G.; Liow, G.R.; Lim, P.T.; Gu, H.F. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 2017, 66, 88–96. [Google Scholar] [CrossRef]
- Wang, N.; Mertens, K.N.; Krock, B.; Luo, Z.H.; Derrien, A.; Pospelova, V.; Liang, Y.B.; Bilien, G.; Smith, K.F.; De Schepper, S.; et al. Cryptic speciation in Protoceratium reticulatum (Dinophyceae): Evidence from morphological, molecular and ecophysiological data. Harmful Algae 2019, 88, 101610. [Google Scholar] [CrossRef]
- Varela, D.; Paredes, J.; Alves-de-Souza, C.; Seguel, M.; Sfeir, A.; Frangópulos, M. Intraregional variation among Alexandrium catenella (Dinophyceae) strains from southern Chile: Morphological, toxicological and genetic diversity. Harmful Algae 2012, 15, 8–18. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.X.; Shang, L.X.; Leaw, C.P.; Lim, P.T.; Tang, Y.Z. Toxicity comparison among four strains of Margalefidinium polykrikoides from China, Malaysia, and USA (belonging to two ribotypes) and possible implications. J. Exp. Mar. Biol. Ecol. 2020, 524, 151293. [Google Scholar] [CrossRef]
- Bolch, C.J.S. The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 1997, 36, 472–478. [Google Scholar] [CrossRef]
- Scholin, C.A.; Herzog, M.; Sogin, M.; Anderson, D.M. Identification of group-specific and strain-specific genetic-markers for globally distributed Alexandrium (dinophyceae). 2. Sequence-analysis of a fragment of the LSU ribosomal-RNA gene. J. Phycol. 1994, 30, 999–1011. [Google Scholar] [CrossRef]
- Daugbjerg, N.; Hansen, G.; Larsen, J.; Moestrup, O. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 2000, 39, 302–317. [Google Scholar] [CrossRef]
- Nikolaev, S.I.; Berney, C.; Fahrni, J.; Mylnikov, A.P.; Aleshin, V.V.; Petrov, N.B.; Pawlowski, J. Gymnophrys cometa and Lecythium sp are core Cercozoa: Evolutionary implications. Acta Protozool. 2003, 42, 183–190. [Google Scholar]
- Guillou, L.; Chrétiennot-Dinet, M.J.; Medlin, L.K.; Claustre, H.; Loiseaux-de Goër, S.; Vaulot, D. Bolidomonas: A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol. 1999, 35, 368–381. [Google Scholar] [CrossRef]
- Al-Raisi, Y.M.M. Identification, Pathogenicity and Control of Ceratocystis radicicola Associated with Date Palm Decline in Oman; The University of Reading: Reading, UK, 2010. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal-W—Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Luo, Z.H.; Hu, Z.X.; Tang, Y.Z.; Mertens, K.N.; Leaw, C.P.; Lim, P.T.; Teng, S.T.; Wang, L.; Gu, H.F. Morphology, ultrastructure, and molecular phylogeny of Wangodinium sinense gen. et sp nov (Gymnodiniales, Dinophyceae) and revisiting of Gymnodinium dorsalisulcum and Gymnodinium impudicum. J. Phycol. 2018, 54, 744–761. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, R.I.; Estrada, M.; Garcés, E. Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages. Harmful Algae 2018, 73, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Harris, A.S.D.; Jones, K.J.; Edmonds, R.L. Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. J. Plankton Res. 1999, 21, 343–354. [Google Scholar] [CrossRef]
- Anderson, D.M.; Wall, D. Potential importance of benthic cysts of Gonyaulax tamarensis and Gonyaulax excavata in initiating toxic dinoflagellate blooms. J. Phycol. 1978, 14, 224–234. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, C.; Li, Y.; Sun, P.; Wang, Z. Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port. Biodivers. Sci. 2020, 28, 144–154. [Google Scholar]
- Choi, H.; Cho, M.; Kim, S. New records of five taxa of unarmored and thin-walled dinoflagellates from brackish and coastal waters of Korea. Korean J. Environ. Biol. 2021, 39, 573–580. [Google Scholar] [CrossRef]
- Alpermann, T.J.; Beszteri, B.; John, U.; Tillmann, U.; Cembella, A.D. Implications of life-history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense. Mol. Ecol. 2009, 18, 2122–2133. [Google Scholar] [CrossRef]
- Bolch, C.J.S.; Blackburn, S.I.; Hallegraeff, G.M.; Vaillancourt, R.E. Genetic variation among strains of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J. Phycol. 1999, 35, 356–367. [Google Scholar] [CrossRef]
- Anderson, D.M.; Kulis, D.M.; Doucette, G.J.; Gallagher, J.C.; Balech, E. Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United-states and Canada. Mar. Biol. 1994, 120, 467–478. [Google Scholar] [CrossRef]
- Genovesi-Giunti, B.; Laabir, M.; Vaquer, A. The benthic resting cyst: A key actor in harmful dinoflagellate blooms—A review. Vie Milieu-Life Environ. 2006, 56, 327–337. [Google Scholar]
- Anglès, S.; Garcés, E.; Reñé, A.; Sampedro, N. Life-cycle alternations in Alexandrium minutum natural populations from the NW Mediterranean Sea. Harmful Algae 2012, 16, 1–11. [Google Scholar] [CrossRef]
- Blackburn, S.I.; Bolch, C.J.S.; Haskard, K.A.; Hallegraeff, G.M. Reproductive compatibility among four global populations of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Phycologia 2001, 40, 78–87. [Google Scholar] [CrossRef]
- Barrett, R.D.H.; Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008, 23, 38–44. [Google Scholar] [CrossRef]
- Park, B.S.; Kim, J.H.; Kim, J.H.; Baek, S.H.; Han, M.S. Intraspecific bloom succession in the harmful dinoflagellate Cochlodinium polykrikoides (Dinophyceae) extended the blooming period in Korean coastal waters in 2009. Harmful Algae 2018, 71, 78–88. [Google Scholar] [CrossRef]
Sampling Ships | Sampling Date | Shipping Route |
---|---|---|
THETIS | 30 October 2020 | Russia-Philippines-South Korea-Canada-Bangladesh-India-Singapore-China |
WARIYA NAREE | 10 March 2021 | United Arab Emirates-Bangladesh-India-Singapore-Indonesia-China |
Origin | LSU | ||||||||||||||||
155 | 240 | 532 | 533 | 549 | 562 | 567 | 568 | 569 | 572 | 573 | 578 | 597 | 604 | 661 | 662 | 681 | |
CHINA | A | C | T | T | G | T | G/C | C/T | A | G/C | T | T | C | T | G | T | A |
KOREA | A | A | T | T | G | T | C | C | A | G | C | T | C | T | G | T | G |
WARIYANAREE | A | A | G/T | A/T | T | C | G | T | C | C | T | C | T | C | G | T | A |
THETIS | A/G | A | G/T | A/T | T | C | G | T | C | C | T | C | T | C | G/C | C/T | A |
Origin | SSU | ITS1-5.8S-ITS2 | |||||||||||||||
98 | 516 | 558 | 797 | 1087 | 84 | 583 | |||||||||||
CHINA | C/T | A | C/T | A/G | A/G | A/T | C | ||||||||||
KOREA | - | - | - | - | - | - | - | ||||||||||
WARIYANAREE | C | G | T | A | G | T | C/T | ||||||||||
THETIS | C | G | T | A | G | T | C |
Groups | Cell Density (Cells/mL) | Number of Test Rotifers per Well (n = 6) | Viable Rotifers at Different Exposure Time (Hour) | ||||||
---|---|---|---|---|---|---|---|---|---|
4 | 8 | 12 | 24 | 48 | 72 | 96 | |||
W. sinense (THETIS) | 4.1 × 104 | 1 | 6 | 6 | 6 | 6 | 6 | 6 | 9 |
W. sinense (WARIYANAREE) | 2.9 × 104 | 1 | 6 | 6 | 6 | 6 | 6 | 8 | 10 |
f/2-Si medium | 0 | 1 | 6 | 6 | 6 | 6 | 6 | 8 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Yue, C.; Liu, Y.; Shi, S.; Li, R.; Chai, Z.; Deng, Y.; Shang, L.; Hu, Z.; Gu, H.; et al. A New Ribo-Type of Wangodinium sinense from Germination of Resting Cysts Isolated from Ballast Tank Sediments of Incoming Ships to China. J. Mar. Sci. Eng. 2025, 13, 942. https://doi.org/10.3390/jmse13050942
Tao Z, Yue C, Liu Y, Shi S, Li R, Chai Z, Deng Y, Shang L, Hu Z, Gu H, et al. A New Ribo-Type of Wangodinium sinense from Germination of Resting Cysts Isolated from Ballast Tank Sediments of Incoming Ships to China. Journal of Marine Science and Engineering. 2025; 13(5):942. https://doi.org/10.3390/jmse13050942
Chicago/Turabian StyleTao, Zhe, Caixia Yue, Yuyang Liu, Shuo Shi, Ruoxi Li, Zhaoyang Chai, Yunyan Deng, Lixia Shang, Zhangxi Hu, Haifeng Gu, and et al. 2025. "A New Ribo-Type of Wangodinium sinense from Germination of Resting Cysts Isolated from Ballast Tank Sediments of Incoming Ships to China" Journal of Marine Science and Engineering 13, no. 5: 942. https://doi.org/10.3390/jmse13050942
APA StyleTao, Z., Yue, C., Liu, Y., Shi, S., Li, R., Chai, Z., Deng, Y., Shang, L., Hu, Z., Gu, H., Li, F., & Tang, Y. (2025). A New Ribo-Type of Wangodinium sinense from Germination of Resting Cysts Isolated from Ballast Tank Sediments of Incoming Ships to China. Journal of Marine Science and Engineering, 13(5), 942. https://doi.org/10.3390/jmse13050942