Autonomous Marine Vehicle Operations—2nd Edition
1. Introduction
2. An Overview of Published Articles
3. Conclusions
List of Contributions
- Wen, N.; Long, Y.; Zhang, R.; Liu, G.; Wan, W.; Jiao, D. COLREGs-Based Path Planning for USVs Using the Deep Reinforcement Learning Strategy. J. Mar. Sci. Eng. 2023, 11, 2334. https://doi.org/10.3390/jmse11122334.
- Liu, G.; Wen, N.; Long, F.; Zhang, R. A Formation Control and Obstacle Avoidance Method for Multiple Unmanned Surface Vehicles. J. Mar. Sci. Eng. 2023, 11, 2346. https://doi.org/10.3390/jmse11122346.
- Liu, J.; Yu, T.; Wu, C.; Zhou, C.; Lu, D.; Zeng, Q. A Low-Cost and High-Precision Underwater Integrated Navigation System. J. Mar. Sci. Eng. 2024, 12, 200. https://doi.org/10.3390/jmse12020200.
- Kristić, M.; Žuškin, S. Quantification of Expert Knowledge in Describing COLREGs Linguistic Variables. J. Mar. Sci. Eng. 2024, 12, 849. https://doi.org/10.3390/jmse12060849.
- Cheng, C.; Hou, X.; Wang, C.; Wen, X.; Liu, W.; Zhang, F. A Pruning and Distillation Based Compression Method for Sonar Image Detection Models. J. Mar. Sci. Eng. 2024, 12, 1033. https://doi.org/10.3390/jmse12061033.
- Wang, C.; Cheng, C.; Cao, C.; Guo, X.; Pan, G.; Zhang, F. An Invariant Filtering Method Based on Frame Transformed for Underwater INS/DVL/PS Navigation. J. Mar. Sci. Eng. 2024, 12, 1178. https://doi.org/10.3390/jmse12071178.
- Liang, Z.; Li, F.; Zhou, S. An Improved NSGA-II Algorithm for MASS Autonomous Collision Avoidance under COLREGs. J. Mar. Sci. Eng. 2024, 12, 1224. https://doi.org/10.3390/jmse12071224.
- Zhang, F.; Hou, X.; Wang, Z.; Cheng, C.; Tan, T. Side-Scan Sonar Image Generator Based on Diffusion Models for Autonomous Underwater Vehicles. J. Mar. Sci. Eng. 2024, 12, 1457. https://doi.org/10.3390/jmse12081457.
- Bobkov, V.; Kudryashov, A. A Method for Recognition and Coordinate Reference of Autonomous Underwater Vehicles to Inspected Objects of Industrial Subsea Structures Using Stereo Images. J. Mar. Sci. Eng. 2024, 12, 1514. https://doi.org/10.3390/jmse12091514.
- Zhang, H.; Jiang, Y.; Gao, R.; Li, H.; Li, A. Prescribed Performance Formation Tracking Control for Underactuated AUVs under Time-Varying Communication Delays. J. Mar. Sci. Eng. 2024, 12, 1533. https://doi.org/10.3390/jmse12091533.
- Dong, Z.; Tan, F.; Yu, M.; Xiong, Y.; Li, Z. A Bio-Inspired Sliding Mode Method for Autonomous Cooperative Formation Control of Underactuated USVs with Ocean Environment Disturbances. J. Mar. Sci. Eng. 2024, 12, 1607. https://doi.org/10.3390/jmse12091607.
- Zhuang, L.; Chen, X.; Lu, W.; Yan, Y. Graph Matching for Underwater Simultaneous Localization and Mapping Using Multibeam Sonar Imaging. J. Mar. Sci. Eng. 2024, 12, 1859. https://doi.org/10.3390/jmse12101859.
- Cao, C.; Wang, C.; Zhao, S.; Tan, T.; Zhao, L.; Zhang, F. Underwater Gyros Denoising Net (UGDN): A Learning-Based Gyros Denoising Method for Underwater Navigation. J. Mar. Sci. Eng. 2024, 12, 1874. https://doi.org/10.3390/jmse12101874.
- Garin, R.; Bouvet, P.-J.; Tomasi, B.; Forjonel, P.; Vanwynsberghe, C. A Low-Cost Communication-Based Autonomous Underwater Vehicle Positioning System. J. Mar. Sci. Eng. 2024, 12, 1964. https://doi.org/10.3390/jmse12111964.
- Kartal, S.K.; Cantekin, R.F. Autonomous Underwater Pipe Damage Detection Positioning and Pipe Line Tracking Experiment with Unmanned Underwater Vehicle. J. Mar. Sci. Eng. 2024, 12, 2002. https://doi.org/10.3390/jmse12112002.
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wang, C.; Han, Q.; Wang, X. Networked and Deep Reinforcement Learning-Based Control for Autonomous Marine Vehicles: A Survey. IEEE Trans. Syst. Man Cybern.-Syst. 2025, 55, 1. [Google Scholar] [CrossRef]
- Restreop, E.; Matous, J.; Pettersen, K.Y. Tracking Control of Cooperative Marine Vehicles Under Hard and Soft Constraints. IEEE Trans. Control Netw. Syst. 2024, 11, 4. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; He, J.; Yu, Y.; Cheng, Y. Real-Time Volumetric Perception for Unmanned Surface Vehicles Through Fusion of Radar and Camera. IEEE Trans. Instrum. Meas. 2024, 73, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Xie, S.; Peng, Y.; Zhang, D.; Pu, H. Trajectory planning for unmanned surface vehicles in multi-ship encounter situations. Ocean Eng. 2023, 285, 2. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, P.; Gao, J.; Huo, W.; Yang, Z.; Liao, Y. A lightweight few-shot marine object detection network for unmanned surface vehicles. Ocean Eng. 2023, 277, 114329. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Z.; Chen, X.; Lu, Y.; Yu, J. Self-Supervised Underwater Image Generation for Underwater Domain Pre-Training. IEEE Trans. Instrum. Meas. 2024, 73, 1–14. [Google Scholar] [CrossRef]
- Cui, Z.; Guan, W.; Zhang, X. Collision avoidance decision-making strategy for multiple USVs based on Deep Reinforcement Learning algorithm. Ocean. Eng. 2024, 308, 118323. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Y.; Zhuang, J.; Su, Y. Intelligent Task Allocation and Planning for Unmanned Surface Vehicle (USV) Using Self-Attention Mechanism and Locking Sweeping Method. J. Mar. Sci. Eng. 2024, 12, 179. [Google Scholar] [CrossRef]
- Yin, S.; Xu, N.; Shi, Z.; Xiang, Z. Collaborative path planning of multi-unmanned surface vehicles via multi-stage constrained multi-objective optimization. Adv. Eng. Inform. 2025, 65, 103115. [Google Scholar] [CrossRef]
- Gao, K.; Gao, M.; Zhou, M.; Ma, Z. Artificial intelligence algorithms in unmanned surface vessel task assignment and path planning: A survey. Swarm Evol. Comput. 2024, 86, 101505. [Google Scholar] [CrossRef]
- Liu, G. Control Strategies for Digital Twin Systems. IEEE-CAA J. Autom. Sin. 2024, 11, 1. [Google Scholar] [CrossRef]
- Li, W.; Ge, Y.; Guan, Z.; Gao, H.; Feng, H. NMPC-based UAV-USV cooperative tracking and landing. J. Frankl. Inst. 2023, 360, 11. [Google Scholar] [CrossRef]
- Qu, X.; Liang, X.; Hou, Y. Fuzzy State Observer Based Cooperative Path-Following Control of Autonomous Underwater Vehicles with Unknown Dynamics and Ocean Disturbances. Int. J. Fuzzy Syst. 2021, 23, 6. [Google Scholar] [CrossRef]
- Yuan, W.; Rui, X. Deep reinforcement learning-based controller for dynamic positioning of an unmanned surface vehicle. Comput. Electr. Eng. 2023, 110, 108858. [Google Scholar] [CrossRef]
- Qu, X.; Jiang, Y.; Zhang, R.; Long, F. A Deep Reinforcement Learning-Based Path-Following Control Scheme for an Uncertain Under-Actuated Autonomous Marine Vehicle. J. Mar. Sci. Eng. 2023, 11, 1762. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhang, R.; Qu, X. Autonomous Marine Vehicle Operations—2nd Edition. J. Mar. Sci. Eng. 2025, 13, 920. https://doi.org/10.3390/jmse13050920
Liang X, Zhang R, Qu X. Autonomous Marine Vehicle Operations—2nd Edition. Journal of Marine Science and Engineering. 2025; 13(5):920. https://doi.org/10.3390/jmse13050920
Chicago/Turabian StyleLiang, Xiao, Rubo Zhang, and Xingru Qu. 2025. "Autonomous Marine Vehicle Operations—2nd Edition" Journal of Marine Science and Engineering 13, no. 5: 920. https://doi.org/10.3390/jmse13050920
APA StyleLiang, X., Zhang, R., & Qu, X. (2025). Autonomous Marine Vehicle Operations—2nd Edition. Journal of Marine Science and Engineering, 13(5), 920. https://doi.org/10.3390/jmse13050920