Research on Parameter Influence of Offshore Wind Turbines Based on Measured Data Analysis
Abstract
:1. Introduction
2. Dataset
2.1. Structure Introduction
2.2. Rotation Data Processing
3. Methods
3.1. Kalman Filter
3.2. Stochastic Subspace Identification
3.3. Finite Element Model Establishment
3.4. Design of the Model Updating the Objective Function
3.5. Uncertain Parameters
3.6. Digital Twin
- (1)
- Dynamic Data-Driven Updating: Unlike conventional FEM updating that relies on periodic experimental data (e.g., modal tests), the DT integrates real-time sensor data from the SCADA system (e.g., accelerations, wind speeds, rotor speeds) and updates structural parameters via Bayesian optimization (Section 3.5). This enables the DT to reflect the structural state under actual operational conditions (Section 4.2).
- (2)
- Closed-Loop Integration: The DT combines KF sensor signals, SSI-based operational modal analysis, and neural network surrogate modeling (Section 3.3, Section 3.4 and Section 3.5) to achieve automated parameter calibration. In contrast, traditional FEM updating requires manual intervention for data processing and model recalibration.
- (3)
- Context-Sensitive Adaptability: The DT prioritizes parameters critical to structural health (e.g., flange stiffness and soil–pile interaction) identified through sensitivity analysis (Section 4.3), whereas conventional FEM updates often focus on global parameter adjustments.
3.7. Technical Roadmap
4. Discussion
4.1. Signal Preprocessing of Wind Turbines
4.2. System Analysis
4.3. Establishing a Surrogate Model
4.4. Model Parameter Optimization and Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Wind Energy Council. 2023. Available online: https://gwec.net/ (accessed on 21 December 2023).
- Ju, S.H.; Huang, Y.C. Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes. Ocean Eng. 2019, 187, 106190. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.S.; Yan, B.W. Specifications and applications of the technical code for monitoring of building and bridge structures in China. Adv. Mech. Eng. 2016, 9, 1687814016684272. [Google Scholar] [CrossRef]
- Martinez-Luengo, M.; Shafiee, M. Guidelines and cost-benefit analysis of the structural health monitoring implementation in offshore wind turbine support structures. Energies 2019, 12, 1176. [Google Scholar] [CrossRef]
- Nielsen, J.S.; Tcherniak, D.; Ulriksen, M.D. A case study on risk-based maintenance of wind turbine blades with structural health monitoring. Struct. Infrastruct. Eng. 2021, 17, 302–318. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Bhalla, S.; Soh, C.K. Applications of structural health monitoring technology in Asia. Struct. Health Monit. 2017, 16, 324–346. [Google Scholar] [CrossRef]
- Klikowicz, P.; Salamak, M.; Poprawa, G. Structural health monitoring of urban structures. Procedia Eng. 2016, 161, 958–962. [Google Scholar] [CrossRef]
- Reynders, E.; Pintelon, R.; De Roeck, G. Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech. Syst. Signal Process. 2008, 22, 948–969. [Google Scholar] [CrossRef]
- Badrzadeh, B.; Gupta, M. Practical experiences and mitigation methods of harmonics in wind power plants. IEEE Trans. Ind. Appl. 2013, 49, 2279–2289. [Google Scholar] [CrossRef]
- Moynihan, B.; Mehrjoo, A.; Moaveni, B.; McAdam, R.; Rüdinger, F.; Hines, E. System identification and finite element model updating of a 6 MW offshore wind turbine using vibrational response measurements. Renew. Energy 2023, 219, 119430. [Google Scholar] [CrossRef]
- Pezeshki, H.; Pavlou, D.; Adeli, H.; Siriwardane, S. Gyroscopic effects of the spinning rotor-blades assembly on dynamic response of offshore wind turbines. J. Wind Eng. Ind. Aerodyn. 2024, 247, 105698. [Google Scholar] [CrossRef]
- Civera, M.; Sibille, L.; Fragonara, L.Z.; Ceravolo, R. A DBSCAN-based automated operational modal analysis algorithm for bridge monitoring. Measurement 2023, 208, 112451. [Google Scholar] [CrossRef]
- Devriendt, C.; Jordaens, P.J.; De Sitter, G.; Guillaume, P. Damping estimation of an offshore wind turbine on a monopile foundation. IET Renew. Power Gener. 2013, 7, 401–412. [Google Scholar]
- Wei, S.; Han, Q.; Peng, Z.; Chu, F. Dynamic analysis of parametrically excited systems under uncertainties and multi-frequency excitations. Mech. Syst. Signal Process. 2016, 72, 762–784. [Google Scholar]
- Kim, C.; Dinh, M.C.; Sung, H.J.; Kim, K.H.; Choi, J.H.; Graber, L.; Yu, I.-K.; Park, M. Design, implementation, and evaluation of an output prediction model of the 10 MW floating offshore wind turbine for a digital twin. Energies 2022, 15, 6329. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, F.; Cai, J.; Wang, Y.; Guo, H.; Zheng, J. Digital twin and its applications: A survey. Int. J. Adv. Manuf. Technol. 2022, 123, 4123–4136. [Google Scholar]
- Bartilson, D.T.; Jang, J.; Smyth, A.W. Sensitivity-based singular value decomposition parametrization and optimal regularization in finite element model updating. Struct. Control Health Monit. 2020, 27, e2539. [Google Scholar]
- Kamariotis, A.; Chatzi, E.; Straub, D. A framework for quantifying the value of vibration-based structural health monitoring. Mech. Syst. Signal Process. 2023, 184, 109708. [Google Scholar]
- Weijtjens, W.; Lataire, J.; Devriendt, C.; Guillaume, P. Dealing with periodical loads and harmonics in operational modal analysis using time-varying transmissibility functions. Mech. Syst. Signal Process. 2014, 49, 154–164. [Google Scholar]
- Dai, K.; Wang, Y.; Lu, W.; Ren, X.; Huang, Z. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure; SPIE: Bellingham, WA, USA, 2017; Volume 10169, pp. 602–608. [Google Scholar]
- Kaimal, J.C.; Wyngaard, J.C.; Isumi, Y.; Coté, O.R. Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 1972, 98, 563–589. [Google Scholar]
- Calidori, A.; Bernagozzi, G.; Castellaro, S.; Landi, L.; Diotallevi, P.P. An FDD-based modal parameter-less proportional flexibility-resembling matrix for response-only damage detection. J. Civ. Struct. Health Monit. 2024, 14, 401–429. [Google Scholar]
- Ciambella, J.; Vestroni, F. The use of modal curvatures for damage localization in beam-type structures. J. Sound Vib. 2015, 340, 126–137. [Google Scholar]
- Lei, S.; Mao, K.; Li, L.; Xiao, W.; Li, B. Direct method for second-order sensitivity analysis of modal assurance criterion. Mech. Syst. Signal Process. 2016, 76, 441–454. [Google Scholar]
- Greś, S.; Döhler, M.; Andersen, P.; Mevel, L. Kalman filter-based subspace identification for operational modal analysis under unmeasured periodic excitation. Mech. Syst. Signal Process. 2021, 146, 106996. [Google Scholar]
Channel | Skewness | Kurtosis |
---|---|---|
1 | −0.011 | 0.031 |
2 | 0.153 | 0.205 |
3 | 0 | 0.018 |
4 | 0.093 | 0.217 |
5 | −0.046 | 0.012 |
6 | −0.018 | −0.07 |
7 | 0 | −0.023 |
8 | 0.016 | −0.031 |
Component | Weight/kg | Center of Gravity/m | Moment of Inertia/kg∙m2 | ||||
---|---|---|---|---|---|---|---|
X | Y | Z | Ixx | Iyy | Izz | ||
RNA | 3.5 × 105 | −4.30 | 2.16 × 10−3 | 2.64 | 4.37 × 107 | 2.353 × 107 | 2.542 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, R.; Zhao, J.; Zhang, T.; Li, C. Research on Parameter Influence of Offshore Wind Turbines Based on Measured Data Analysis. J. Mar. Sci. Eng. 2025, 13, 629. https://doi.org/10.3390/jmse13040629
Kuang R, Zhao J, Zhang T, Li C. Research on Parameter Influence of Offshore Wind Turbines Based on Measured Data Analysis. Journal of Marine Science and Engineering. 2025; 13(4):629. https://doi.org/10.3390/jmse13040629
Chicago/Turabian StyleKuang, Renfei, Jinhai Zhao, Tuo Zhang, and Chengyang Li. 2025. "Research on Parameter Influence of Offshore Wind Turbines Based on Measured Data Analysis" Journal of Marine Science and Engineering 13, no. 4: 629. https://doi.org/10.3390/jmse13040629
APA StyleKuang, R., Zhao, J., Zhang, T., & Li, C. (2025). Research on Parameter Influence of Offshore Wind Turbines Based on Measured Data Analysis. Journal of Marine Science and Engineering, 13(4), 629. https://doi.org/10.3390/jmse13040629