Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity
Abstract
:1. Introduction
2. Geological Setting
3. Methods and Samples
3.1. TOC Content, Maceral Analysis, and Mineral Composition
3.2. Gas Physisorption
3.3. FE-SEM (Field Emission-Scanning Electron Microscopy)
3.4. MICP
3.5. Fractal Theory
4. Results
4.1. TOC Content and Mineral Composition
4.2. Organic Petrography
4.3. FE-SEM Observation
4.4. Pore Structure Characterization
4.5. Fractal Dimensions
5. Discussion
5.1. OM Types in Deposits from Different Depositional Environments
5.2. Development and Evolution of OM-Hosted Pores
5.3. Effect of TOC Content and Mineral Composition on Pore Structure and Fractal Dimension
5.4. Effect of Mineral Composition on Pore Structure
5.5. Implications for OM Pore Formation Mechanism and Porosity Evolution Model
6. Conclusions
- (1)
- Most samples exhibited TOC contents ranging between 1% and 10%, except for two samples from a coaly section in the Jurassic of the Qaidam Basin, which reached up to 39%. Ro varied widely, from approximately 0.5% in the Jurassic of the Qaidam Basin to about 1.3% Ro on the Upper Permian Yangtze Platform, covering the entire oil window. Additionally, a section from the Yangtze Platform showed much higher thermal maturity, with Ro values reaching 2.5%, enabling a comparison with the thermal gas generation stage.
- (2)
- The pores within OM in the analyzed samples were classified into two categories: primary pores and secondary pores. Most terrestrial kerogen particles showed no or very little meso- and macro-pores, except for micrometer-sized pores with relatively rounded shapes in the inertinite within carbonaceous mudstones deposited in fluvial environments from the DMGF of the CY1 well. A certain number of nanometer-scale primary pores were also observed in some stripped kerogen particles. Primary pores were also visible in some inertinite particles for the transitional LF from the GD1 well. In the marine DLF from the GD1 and XY1 wells, the pore space between mineral grains was mostly occupied by a pervasive SB network. However, for the samples from the XY1 wells, more secondary pores with diameters of approximately 10–200 nm could be observed in the SB. In the marine samples from the BY1 well, secondary pores with spongy and irregular shapes were densely distributed within the Pyb network.
- (3)
- Terrestrial carbonaceous mudstones from the CY1 well exhibited the highest porosity (8.78–11.71%) and micropore volumes (0.0303–0.0491 cm3/g), whereas marine deposits from the DLF from the XY1 well showed the lowest porosity (0.31–0.51%) and mesopore + macropore volumes (0.0066–0.0104 cm3/g). Overall, the analyzed samples were predominantly composed of nanoscale pores with pore-throat diameters ranging from 6.29 nm to 10.49 nm, with mercury entrapment ratios varying between 17% and 57% (avg. 31%).
- (4)
- In the terrestrial DMGF from the CY1 well, the TOC contents and PVs of samples with low TOC content did not show a strong correlation, but two fluvial carbonaceous mudstones with the highest TOC contents exhibited very high micro-PVs due to the very high primary micropore volume of early mature vitrinite. Weak negative relationships between TOC contents and PVs were observed for samples at higher thermal maturity, resulting, on the one hand, from the rather low TOC contents and, on the other hand, from the loss of primary pores within the late oil window. Secondary pores started to form in SB, while on the other hand SB occupied and diminished the primary interparticle pore space between minerals at this stage. Conversely, in over-mature marine samples from the BY well, a notably strong positive correlation existed between the TOC contents and PVs, which was attributed to the presence of well-developed secondary pores in the Pyb. A large part of these pores were well visible as mesoporosity under SEM investigation. Maturity played a crucial role in shaping the pore structures, with over-mature marine samples generally exhibiting increased porosity. In contrast, terrestrial kerogen, which rarely formed solid bitumen, primarily developed micropores at high maturity. These micropores were undetectable via SEM, and no mesopore formation was observed.
- (5)
- In the deposits within the study area, porosity development was directly governed by compaction, solid bitumen emplacement, and maturity. As thermal maturity increased, molecular bonds underwent a transition from longer to shorter lengths as they broke down, resulting in a higher rate of gas generation. The expulsion of gas contributed to the formation of secondary pores within OM.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Li, Z.; Wang, D.; Xu, L.; Li, Z.; Niu, J.; Chen, L.; Sun, Y.; Li, Q.; Yang, Z.; et al. Shale gas accumulation patterns in China. Nat. Gas Ind. B 2023, 10, 14–31. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, Z.; Feng, Y.; Zhang, J.; Cai, D.; Chen, L.; Wu, Y.; Zhou, D.; Bao, S.; Long, S. Geologic characteristics of hydrocarbon-bearing marine, transitional and lacustrine shales in China. J. Asian Earth Sci. 2016, 115, 404–418. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.C.; Tang, X.; Ding, H.H.; Zhao, Q.R.; Dang, W.; Chen, H.Y.; Su, Y.; Li, B.W.; Lu, D.F. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China. Int. J. Coal Geol. 2017, 71, 76–92. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.; Wang, S.; Wu, F.; Miao, Y.; Wang, X.; Wang, H.; Liu, X. Differences of marine and transitional shales in the case of dominant pore types and exploration strategies, in China. J. Nat. Gas Sci. Eng. 2022, 103, 104628. [Google Scholar] [CrossRef]
- Xie, W.; Tan, J.; Wang, W.; Schulz, H.M.; Liu, Z.; Kang, X.; Shahzad, A.; Jan, I.U. Middle Jurassic lacustrine source rocks controlled by an aridification event: A case study in the northern Qaidam Basin (NW China). Int. J. Coal Geol. 2021, 242, 103779. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, D.; Lu, S.; Jiang, S.; Chen, L.; Guo, T.; Wu, L. Pore development of the Lower Longmaxi shale in the southeastern Sichuan Basin and its adjacent areas: Insights from lithofacies identification and organic matter. Mar. Petrol. Geol. 2020, 122, 104662. [Google Scholar] [CrossRef]
- Cardott, B.J.; Landis, C.R.; Curtis, M.E. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway. Int. J. Coal Geol. 2015, 139, 106–113. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M. Combined SEM and reflected light petrography of organic matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation. Int. J. Coal Geol. 2017, 184, 57–72. [Google Scholar] [CrossRef]
- Liu, B.; Mastalerz, M.; Schieber, J. SEM petrography of dispersed organic matter in black shales: A review. Earth Sci. Rev. 2022, 224, 103874. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Stankiewicz, A.B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. Int. J. Coal Geol. 2018, 195, 14–36. [Google Scholar] [CrossRef]
- Cao, T.; Deng, M.; Cao, Q.; Huang, Y.; Yu, Y.; Cao, X. Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: Examination of artificially and naturally matured samples. J. Nat. Gas Sci. Eng. 2021, 93, 104020. [Google Scholar] [CrossRef]
- Cao, T.; Liu, H.; Pan, A.; Fu, Y.; Deng, M.; Cao, Q.; Huang, Y.; Yu, Y. Pore evolution in siliceous shales and its influence on shale gas-bearing capacity in eastern Sichuan-western Hubei, China. J. Petrol. Sci. Eng. 2022, 208, 109597. [Google Scholar] [CrossRef]
- Teng, J.; Mastalerz, M.; Liu, B. Petrographic and chemical structure characteristics of amorphous organic matter in marine black shales: Insights from Pennsylvanian and Devonian black shales in the Illinois Basin. Int. J. Coal Geol. 2021, 235, 103676. [Google Scholar] [CrossRef]
- Wu, Z.; He, S.; He, Z.; Li, X.; Zhai, G.; Huang, Z. Petrographical and geochemical characterization of the Upper Permian Longtan formation and Dalong Formation in the Lower Yangtze region, South China: Implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms. Mar. Petrol. Geol. 2022, 139, 105580. [Google Scholar] [CrossRef]
- Wu, Z.; Grohmann, S.; Littke, R.; Guo, T.; He, S.; Baniasad, A. Organic petrologic and geochemical characterization of petroleum source rocks in the Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China: Insights into paleo-depositional environment and organic matter accumulation. Int. J. Coal Geol. 2022, 259, 104038. [Google Scholar] [CrossRef]
- Jacob, H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int. J. Coal Geol. 1989, 11, 65–79. [Google Scholar] [CrossRef]
- Wei, S.; He, S.; Pan, Z.; Zhai, G.; Dong, T.; Guo, X.; Yang, R.; Han, Y.; Yang, W. Characteristics and evolution of pyrobitumen-hosted pores of the overmature Lower Cambrian Shuijingtuo Shale in the south of Huangling anticline, Yichang area, China: Evidence from FE-SEM petrography. Mar. Petrol. Geol. 2020, 116, 104303. [Google Scholar] [CrossRef]
- Teng, J.; Liu, B.; Mastalerz, M.; Schieber, J. Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China. Int. J. Coal Geol. 2022, 253, 103970. [Google Scholar] [CrossRef]
- Yang, C.; Xiong, Y.; Zhang, J.; Liu, Y.; Chen, C. Comprehensive understanding of OM-hosted pores in transitional shale: A case study of Permian Longtan shale in South China based on organic petrographic analysis, gas adsorption, and X-ray diffraction measurements. Energy Fuels 2019, 33, 8055–8064. [Google Scholar] [CrossRef]
- Froidl, F.; Zieger, L.; Mahlstedt, N.; Littke, R. Comparison of single-and multi-ramp bulk kinetics for a natural maturity series of Westphalian coals: Implications for modelling petroleum generation. Int. J. Coal Geol. 2020, 219, 103378. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP system 1994). Fuel 2001, 80, 459–471. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Radliński, A.P.; Blach, T.P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Barré, L. Contribution of small-angle x-ray and neutron scattering (saxs and sans) to the characterization of natural nanomaterials. In X-Ray and Neutron Techniques for Nanomaterials Characterization; Springer: Berlin/Heidelberg, Germany, 2016; pp. 665–716. [Google Scholar]
- Chen, L.; Jiang, Z.; Liu, K.; Wang, P.; Gao, F.; Hu, T. Application of low-pressure gas adsorption to nanopore structure characterisation of organic-rich lower Cambrian shale in the Upper Yangtze Platform, South China. Aust. J. Earth Sci. 2017, 64, 653–665. [Google Scholar] [CrossRef]
- Peng, N.; He, S.; Hu, Q.; Zhang, B.; He, X.; Zhai, G.; He, C.; Yang, R. Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan, China. Mar. Petrol. Geol. 2019, 103, 456–472. [Google Scholar] [CrossRef]
- Wei, S.; Hu, M.; He, S.; Shu, Y.; Dong, T.; He, Q.; Yang, W.; Cai, Q. Effects of Quartz Precipitation on the Abundance and Preservation of Organic Matter Pores in Cambrian Marine Shale in South China. J. Mar. Sci. Eng. 2023, 11, 1267. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Q.; Zhao, C.; Zhang, C.; Ilavsky, J.; Yu, L.; Ma, C.; Cheng, H.; Li, X.; Zhang, Y.; et al. Integrated experimental studies of pore structure and fluid uptake in the Bossier Shale in eastern Texas, USA. Fuel 2025, 384, 133926. [Google Scholar] [CrossRef]
- Wu, Z.; He, S.; Li, X.; Liu, X.; Zhai, G.; Huang, Z.; Yang, W. Comparative study on pore structure characteristics of ma-rine and transitional facies shales: A case study of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze area, south China. J. Petrol. Sci. Eng. 2022, 215, 110578. [Google Scholar] [CrossRef]
- Cao, T.T.; Deng, M.; Song, Z.G.; Luo, H.Y.; Hursthouse, A.S. Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China. J. Nat. Gas Sci. Eng. 2018, 60, 228–245. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, Y.; Li, Y. Effects of oil expulsion and pressure on nanopore development in highly mature shale: Evidence from a pyrolysis study of the Eocene Maoming oil shale, south China. Mar. Petrol. Geol. 2017, 86, 526–536. [Google Scholar] [CrossRef]
- Giffin, S.; Littke, R.; Klaver, J.; Urai, J.L. Application of BIB–SEM technology to characterize macropore morphology in coal. Int. J. Coal Geol. 2013, 114, 85–95. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Han, Y.; Horsfield, B.; Wirth, R.; Mahlstedt, N.; Bernard, S. Oil retention and porosity evolution in organic rich shales. AAPG Bull. 2017, 101, 807–827. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Z.; Zhai, X.; Cui, J.; Bai, L.; Pan, S.; Cui, J. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints. Mar. Petrol. Geol. 2019, 102, 377–390. [Google Scholar] [CrossRef]
- Wang, X.M.; Jiang, Z.X.; Jiang, S.; Chang, J.Q.; Li, X.H.; Wang, X.; Zhu, L. Pore evolution and formation mechanism of organic-rich shales in the whole process of hydrocarbon generation: Study of artificial and natural shale samples. Energy Fuels 2020, 34, 332–347. [Google Scholar] [CrossRef]
- Hanson, A.D.; Ritts, B.D.; Zinniker, D.; Moldowan, J.M.; Biffi, U. Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China. AAPG Bull. 2001, 85, 601–619. [Google Scholar]
- Xia, W.; Zhang, N.; Yuan, X.; Fan, L.; Zhang, B. Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifted basin. AAPG Bull. 2001, 85, 715–736. [Google Scholar]
- Jian, X.; Guan, P.; Zhang, W.; Feng, F. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chem. Geol. 2013, 360, 74–88. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Jia, C.Z.; Xie, X.N.; Zhang, S.; Feng, Z.H.; Cross, T.A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China. Basin Res. 2010, 22, 79–95. [Google Scholar]
- Xu, Z.; Wang, Y.; Jiang, S.; Fang, C.; Liu, L.; Wu, K.; Luo, Q.; Li, X.; Chen, Y. Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: A case study of lacustrine shale in Dehui Depression of Songliao Basin, NE China. Mar. Petrol. Geol. 2022, 135, 105386. [Google Scholar] [CrossRef]
- Wu, Z.; Littke, R.; Baniasad, A.; Yang, Z.; Tang, Z.; Grohmann, S. Geochemistry and petrology of petroleum source rocks in the Upper Cretaceous Qingshankou Formation, Songliao Basin, NE China. Int. J. Coal Geol. 2023, 270, 104222. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Yan, J. Sedimentary environments and controlling factors of hydrocarbon source rocks of the Late Permian Wujiaping Age in Yangtze area. J. Palaeogeogr. 2010, 12, 244–252, (In Chinese with English abstract). [Google Scholar]
- Kong, W. Research of Sedimentary Facies and Paleogeography of Middle and Later Permian in the Northern Margin of Middle and Upper Yangtze Region. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2011. (In Chinese with English abstract). [Google Scholar]
- Ding, J.; Sun, J.; Zhang, J.; Yang, X.; Shi, G.; Wang, R.; Huang, B.; Li, H. Elemental geochemical evidence for controlling factors and mechanisms of transitional organic matter accumulation: The upper Permian Longtan Formation black shale in the Lower Yangtze region, South China. J. Nat. Gas Sci. Eng. 2022, 98, 104385. [Google Scholar] [CrossRef]
- Gu, Z.; Peng, Y.; He, Y.; Hu, Z.; Zhai, Y. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong depression. Geol. China 2015, 42, 288–299, (In Chinese with English abstract). [Google Scholar]
- Zheng, B. Sedimentary Evolution of the Western Hubei Trough and Its Tectonic Implications—With Discussions on the Source of the PTB Bentonite in South China. Ph.D. Thesis, China University of Geosciences (Wuhan), Wuhan, China, 2019. (In Chinese with English abstract). [Google Scholar]
- Bertrand, R. Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada. Energy Sources 1993, 15, 269–287. [Google Scholar] [CrossRef]
- Jaroniec, M. Evaluation of the fractal dimension from a single adsorption isotherm. Langmuir 1995, 11, 2316–2317. [Google Scholar] [CrossRef]
- Jia, A.; Hu, D.; He, S.; Guo, X.; Hou, Y.; Wang, T.; Yang, R. Variations of pore structure in organic-rich shales with different lithofacies from the Jiangdong block, Fuling shale gas field, SW China: Insights into gas storage and pore evolution. Energy Fuels 2020, 34, 12457–12475. [Google Scholar] [CrossRef]
- Wu, Z.R.; He, S.; Han, Y.J.; Zhai, G.Y.; He, X.P.; Zhou, Z. Effect of organic matter type and maturity on organic matter pore formation of transitional facies shales: A case study on upper permian Longtan and Dalong shales in Middle Yangtze region, China. J. Earth Sci. 2020, 31, 368–384. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Reinoso, F.R.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Littke, R.; Baker, D.R.; Leythaeuser, D. Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Org. Geochem. 1988, 13, 549–559. [Google Scholar] [CrossRef]
- Rullkötter, J.; Leythaeuser, D.; Horsfield, B.; Littke, R.; Mann, U.; Müller, P.J.; Radke, M.; Schaefer, R.G.; Schenk, H.-J.; Schwochau, K.; et al. Organic matter maturation under the influence of a deep intrusive heat source: A natural experiment for quantitation of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). Org. Geochem. 1988, 13, 847–856. [Google Scholar] [CrossRef]
- Wood, J.M.; Sanei, H.; Haeri-Ardakani, O.; Curtis, M.E.; Akai, T.; Currie, C. Solid bitumen in the Montney Formation: Diagnostic petrographic characteristics and significance for hydrocarbon migration. Int. J. Coal Geol. 2018, 198, 48–62. [Google Scholar] [CrossRef]
- Reed, R.M. Organic-matter-pores: New findings from lower-thermal-maturity mudrocks. GCAGS J. 2017, 6, 99–110. [Google Scholar]
- Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.-M.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin). Int. J. Coal Geol. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- Shi, M.; Yu, B.; Zhang, J.; Huang, H.; Yuan, Y.; Li, B. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion. J. Nat. Gas Sci. Eng. 2018, 59, 406–413. [Google Scholar] [CrossRef]
- Prinz, D.; Pyckhout-Hintzen, W.; Littke, R. Development of the meso-and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments. Fuel 2004, 83, 547–556. [Google Scholar] [CrossRef]
- Zhao, R.; Xue, H.; Lu, S.; Li, J.; Tian, S.; Dong, Z. Multi-scale pore structure characterization of lacustrine shale and its coupling relationship with material composition: An integrated study of multiple experiments. Mar. Petrol. Geol. 2022, 140, 105648. [Google Scholar] [CrossRef]
- Littke, R.; Leythaeuser, D. Migration of oil and gas in coals. AAPG Spec. Vol. 1993, 180, 219–236. [Google Scholar]
- Wang, M.; Xue, H.; Tian, S.; Wilkins, R.W.; Wang, Z. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar. Pet. Geol. 2015, 67, 144–153. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Pan, Z.; Niu, X.; Yu, Y.; Meng, S. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China. Fuel 2019, 241, 417–431. [Google Scholar] [CrossRef]
- Han, H.; Guo, C.; Zhong, N.N.; Pang, P.; Gao, Y. A study on fractal characteristics of lacustrine shales of Qingshankou Formation in the Songliao Basin, northeast China using nitrogen adsorption and mercury injection methods. J. Petrol. Sci. Eng. 2020, 193, 107378. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.; He, J.; Dai, P.; Yin, S.; Xie, F. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Petrol. Geol. 2016, 70, 46–57. [Google Scholar] [CrossRef]
- Broichhausen, H.; Littke, R.; Hantschel, T. Mudstone compaction and its influence on overpressure generation, elucidated by a 3D case study in the North Sea. Int. J. Earth Sci. 2005, 94, 956–978. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Shu, Z.; He, S.; Wu, Z. Differences in the nanopore structure of organic-rich shales with distinct sedimentary environments and mineral compositions. Energy Fuels 2021, 35, 16562–16577. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Lu, Y.; Shu, Z.; Lu, Y.; Shu, Z.; Lu, Y.; Wang, Z.; Wang, Y. Evaluation of the exploration prospect and risk of marine gas shale, southern China: A case study of Wufeng-Longmaxi shales in the Jiaoshiba area and Niutitang shales in the Cen’gong area. GSA Bull. 2022, 134, 1585–1602. [Google Scholar] [CrossRef]
- Ji, W.; Song, Y.; Jiang, Z.; Meng, M.; Liu, Q.; Chen, L.; Wang, P.; Gao, F.; Huang, H. Fractal characteristics of nano-pores in the lower Silurian Longmaxi shales from the upper Yangtze platform, south China. Mar. Petrol. Geol. 2016, 78, 88–98. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, X. Influence of reservoir properties on the adsorption capacity and fractal features of shales from Qinshui coalfield. J. Petrol. Sci. Eng. 2019, 177, 650–662. [Google Scholar] [CrossRef]
- Hu, Q.H.; Liu, X.G.; Gao, Z.Y.; Liu, S.G.; Zhou, W.; Hu, W.X. Pore structure and tracer migration behavior of typical American and Chinese shales. Pet. Sci. 2015, 12, 651–663. [Google Scholar] [CrossRef]
- Kibria, M.G.; Hu, Q.; Liu, H.; Zhang, Y.; Kang, J. Pore structure, wettability, and spontaneous imbibition of Woodford shale, Permian Basin, West Texas. Mar. Petrol. Geol. 2018, 91, 735–748. [Google Scholar] [CrossRef]
- Yang, Y.; Aplin, A.C. A permeability–porosity relationship for mudstones. Mar. Petrol. Geol. 2010, 27, 1692–1697. [Google Scholar] [CrossRef]
- Misch, D.; Gross, D.; Hawranek, G.; Horsfield, B.; Klaver, J.; Mendez-Martin, F.; Urai, J.L.; Vranjes-Wessely, S.; Sachsenhofer, R.F.; Schmatz, J.; et al. Solid bitumen in shales: Petrographic characteristics and implications for reservoir characterization. Int. J. Coal Geol. 2019, 205, 14–31. [Google Scholar] [CrossRef]
- Ungerer, P.; Collell, J.; Yiannourakou, M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy Fuel. 2015, 29, 91–105. [Google Scholar] [CrossRef]
- Milliken, K.L.; Ko, L.T.; Pommer, M.; Marsaglia, K.M. Petrography of eastern Mediterranean Sapropels: Analogue data for assessing organic matter in oil and gas shales. J. Sediment. Res. 2014, 84, 961–974. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Jin, Z.; Hu, Q.; Hu, Z.; Du, W.; Yan, C.; Geng, Y. Mineral types and organic matters of the Ordovician-SilurianWufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks. Mar. Pet. Geol. 2017, 86, 655–674. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Hackley, P.C.; Cardott, B.J. Application of organic petrography in North American shale petroleum systems: A review. Int. J. Coal Geol. 2016, 163, 8–51. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Amann-Hildenbrand, A.; Gasparik, M.; Gensterblum, Y.; Krooss, B.M.; Littke, R. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: II. Posidonia Shale (Lower Toarcian, northern Germany). Int. J. Coal Geol. 2014, 123, 20–33. [Google Scholar] [CrossRef]
Well | Formation | Age | Sampling Location | Lithology | Depositional Environment | TOC (wt%) | Ro (%) |
---|---|---|---|---|---|---|---|
CY1 | DMGF | Middle Jurassic | Qaidam Basin | oil shale, mudstone, sandy mudstone, carbonaceous mudstone | terrestrial | 1.5~39.2 (avg. 9.4) | 0.4~0.6 (avg. 0.5) |
HA | K2qn1 | Upper Cretaceous | Songliao Basin | shale, mudstone, silty mudstone | terrestrial | 0.6~3.0 (avg. 1.8) | 0.8~0.9 (avg. 0.8) |
GD1 | LF, DLF | Upper Permian | Lower Yangtze | shale, mudstone, silty mudstone | transitional, marine | 0.2~6.2 (avg. 2.2) | 1.0~1.2 (avg. 1.1) |
XY1 | DLF | Upper Permian | Middle Yangtze | shale, calcareous shale | marine | 2.7~6.8 (avg. 4.4) | 1.2~1.4 (avg. 1.3) |
BY1 | WF, DL, DYF | Upper Permian, Lower Triassic | Upper Yangtze | shale, siliceous mudstone | marine | 0.6~10.8 (avg. 2.8) | 2.1~2.5 (avg. 2.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Littke, R.; Qin, S.; Huang, Y.; He, S.; Zhai, G.; Huang, Z.; Wang, K. Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity. J. Mar. Sci. Eng. 2025, 13, 609. https://doi.org/10.3390/jmse13030609
Wu Z, Littke R, Qin S, Huang Y, He S, Zhai G, Huang Z, Wang K. Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity. Journal of Marine Science and Engineering. 2025; 13(3):609. https://doi.org/10.3390/jmse13030609
Chicago/Turabian StyleWu, Zhongrui, Ralf Littke, Shuo Qin, Yahao Huang, Sheng He, Gangyi Zhai, Zhengqing Huang, and Kaiming Wang. 2025. "Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity" Journal of Marine Science and Engineering 13, no. 3: 609. https://doi.org/10.3390/jmse13030609
APA StyleWu, Z., Littke, R., Qin, S., Huang, Y., He, S., Zhai, G., Huang, Z., & Wang, K. (2025). Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity. Journal of Marine Science and Engineering, 13(3), 609. https://doi.org/10.3390/jmse13030609