Efficient One-Dimensional Network Design Method for Underwater Acoustic Target Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. FFT-UATR-ND1D
2.2. ResNet1D Model Based on FFT-UATR-ND1D
2.3. Parameter Space and Datasets
3. Results
3.1. Experimental Configuration
3.2. Performance Comparison on ShipsEar and DeepShip
3.3. Results of Partial Experiments on ShipsEar and DeepShip
3.4. Visualization Results of T-SNE
4. Conclusions
- Need for Manual Feature Design: Significant effort is still required to design effective features.
- Inappropriate Sample Duration (SD) or Upper Limit Frequency (ULF): Larger SD or ULF values are often necessary, which do not align with the specific characteristics of hydroacoustic target recognition tasks.
- Underutilization of Deep Learning’s Learning Capability: There is a tendency to rely on complex advanced models without customizing them for one-dimensional hydroacoustic data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Han, G.; Zhang, F.; Lin, C.; Peng, J.; Liu, L. Distributional soft actor-critic-based multi-AUV cooperative pursuit for maritime security protection. IEEE Trans. Intell. Transp. Syst. 2023, 25, 6049–6060. [Google Scholar] [CrossRef]
- Li, L. Building up a sustainable path to maritime security: An analytical framework and its policy applications. Sustainability 2023, 15, 6757. [Google Scholar] [CrossRef]
- Nguyen, M.-H.; Duong, M.-P.T.; Nguyen, M.-C.; Mutai, N.; Jin, R.; Nguyen, P.-T.; Le, T.-T.; Vuong, Q.-H. Promoting stakeholders’ support for marine protection policies: Insights from a 42-country dataset. Sustainability 2023, 15, 12226. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Z.; Di, Q.; Wu, H. Assessing the marine ecological welfare performance of coastal regions in China and analysing its determining factors. Ecol. Indic. 2023, 147, 109942. [Google Scholar] [CrossRef]
- Mazzocchi, M.G.; Di Capua, I.; Kokoszka, F.; Margiotta, F.; d’Alcalà, M.R.; Sarno, D.; Zingone, A.; Licandro, P. Coastal mesozooplankton respond to decadal environmental changes via community restructuring. Mar. Ecol. 2023, 44, e12746. [Google Scholar] [CrossRef]
- Fernandez Garcia, G.; Corpetti, T.; Nevoux, M.; Beaulaton, L.; Martignac, F. AcousticIA, a deep neural network for multi-species fish detection using multiple models of acoustic cameras. Aquat. Ecol. 2023, 57, 881–893. [Google Scholar] [CrossRef]
- Er, M.J.; Chen, J.; Zhang, Y.; Gao, W. Research challenges, recent advances, and popular datasets in deep learning-based underwater marine object detection: A review. Sensors 2023, 23, 1990. [Google Scholar] [CrossRef]
- El Mekkaoui, S.; Benabbou, L.; Caron, S.; Berrado, A. Deep learning-based ship speed prediction for intelligent maritime traffic management. J. Mar. Sci. Eng. 2023, 11, 191. [Google Scholar] [CrossRef]
- Niu, H.; Li, X.; Zhang, Y.; Xu, J. Advances and applications of machine learning in underwater acoustics. Intell. Mar. Technol. Syst. 2023, 1, 8. [Google Scholar] [CrossRef]
- Luo, X.; Chen, L.; Zhou, H.; Cao, H. A survey of underwater acoustic target recognition methods based on machine learning. J. Mar. Sci. Eng. 2023, 11, 384. [Google Scholar] [CrossRef]
- Yang, H.; Lee, K.; Choo, Y.; Kim, K. Underwater acoustic research trends with machine learning: General background. J. Ocean Eng. Technol. 2020, 34, 147–154. [Google Scholar] [CrossRef]
- Zhu, C.; Cao, T.; Chen, L.; Dai, X.; Ge, Q.; Zhao, X. High-order domain feature extraction technology for ocean acoustic observation signals: A review. IEEE Access 2023, 11, 17665–17683. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, Y.; Yang, Y. Underwater acoustic target recognition based on data augmentation and residual CNN. Electronics 2023, 12, 1206. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W.; Zhu, Y.; Wu, C.; Zhang, S. An underwater acoustic target recognition method based on AMNet. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5501105. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Santos-Domínguez, D.; Torres-Guijarro, S.; Cardenal-López, A.; Pena-Gimenez, A. ShipsEar: An underwater vessel noise database. Appl. Acoust. 2016, 113, 64–69. [Google Scholar] [CrossRef]
- Irfan, M.; Jiangbin, Z.; Ali, S.; Iqbal, M.; Masood, Z.; Hamid, U. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification. Expert Syst. Appl. 2021, 183, 115270. [Google Scholar] [CrossRef]
- Hong, F.; Liu, C.; Guo, L.; Chen, F.; Feng, H. Underwater acoustic target recognition with a residual network and the optimized feature extraction method. Appl. Sci. 2021, 11, 1442. [Google Scholar] [CrossRef]
- Khishe, M. DRW-AE: A deep recurrent-wavelet autoencoder for underwater target recognition. IEEE J. Ocean. Eng. 2022, 47, 1083–1098. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, M.; Zhang, Y.; Zhang, B.; Xu, K.; Zou, B.; Huang, Z. Imbalanced underwater acoustic target recognition with trigonometric loss and attention mechanism convolutional network. Remote Sens. 2022, 14, 4103. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Cui, X.; Li, S.; Liu, J. Underwater acoustic target recognition based on attention residual network. Entropy 2022, 24, 1657. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Q. MSLEFC: A low-frequency focused underwater acoustic signal classification and analysis system. Eng. Appl. Artif. Intell. 2023, 123, 106333. [Google Scholar] [CrossRef]
- Alouani, Z.; Hmamouche, Y.; Khamlichi, B.E.; Seghrouchni, A.E.F. A spatio-temporal deep learning approach for underwater acoustic signals classification. In Proceedings of the 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Madrid, Spain, 29 November–2 December 2022; IEEE Publications: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Miao, Y.; Zakharov, Y.V.; Sun, H.; Li, J.; Wang, J. Underwater acoustic signal classification based on sparse time–frequency representation and deep learning. IEEE J. Ocean. Eng. 2021, 46, 952–962. [Google Scholar] [CrossRef]
- Cheng, Z.; Huo, G.; Li, H. A multi-domain collaborative transfer learning method with multi-scale repeated attention mechanism for underwater side-scan sonar image classification. Remote Sens. 2022, 14, 355. [Google Scholar] [CrossRef]
- Ren, P.; Xiao, Y.; Chang, X.; Huang, P.; Li, Z.; Chen, X.; Wang, X. A comprehensive survey of neural architecture search: Challenges and solutions. ACM Comput. Surv. 2022, 54, 1–34. [Google Scholar] [CrossRef]
- Feng, S.; Zhu, X. A transformer-based deep learning network for underwater acoustic target recognition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1505805. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Publications: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Chitty-Venkata, K.T.; Emani, M.; Vishwanath, V.; Somani, A.K. Neural architecture search benchmarks: Insights and survey. IEEE Access 2023, 11, 25217–25236. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Taye, M.M. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
- Zhang, T.; Lei, C.; Zhang, Z.; Meng, X.-B.; Chen, C.L.P. AS-NAS: Adaptive scalable neural architecture search with reinforced evolutionary algorithm for deep learning. IEEE Trans. Evol. Comput. 2021, 25, 830–841. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.; Nakashima, Y.; Nagahara, H. Learning bottleneck concepts in image classification. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; IEEE: Piscataway, NJ, USA, 17–24 June 2023; pp. 10962–10971. [Google Scholar] [CrossRef]
- Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural architecture search without training. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 7588–7598. [Google Scholar]
- Reyad, M.; Sarhan, A.M.; Arafa, M. A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl. 2023, 35, 17095–17112. [Google Scholar] [CrossRef]
Variable Name | Ranges | Number |
---|---|---|
SD (S) | [0.5, 1, 1.5, 2] | 4 |
ULF (Hz) | [500, 1000, 2000] | 3 |
ResNet1D | [1, 1], [2, 1], [2, 2] [1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 2, 2] [1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 2, 2, 1], [2, 2, 2, 2] | 12 |
window | Rect, bartlett, blackman, hamming, hann, Kaiser | 6 |
random seed | [0, 1, 2, 3, 4] | 5 |
Total | 864 × 5 = 4320 |
Categories | Ships | SD |
---|---|---|
A | fishing boats, trawlers, mussel boats, tugboats, dredgers | 1881.27 s |
B | motorboats, pilot boats, sailboats | 1567.45 s |
C | passenger ferries | 4278.16 s |
D | ocean liners, ro-ro vessels | 2460.65 s |
E | background noise recordings | 1146.36 s |
Total | 3.15 h |
Categories | SD |
---|---|
cargo | 38,495 s |
passenger ship | 46,421 s |
tanker | 44,530 s |
tug | 40,539 s |
Total | 47.22 h |
Model | Result (%) | Params (M) | FLOPs (M) | RT 1 (m) | Size | Feature | SD 2(s), ULF 3 (Hz) |
---|---|---|---|---|---|---|---|
ResNet2D18 [20] | 94.3 | 11.19 | 1880 | 3.9 | 60 × 41 × 3 | LM + MFCC + CCTZ | 5, 20,480 |
SVM [21] | 94.49 | 0.1 | 20 | 3.4 | 126 × 128 | DAWN + DRA | 0.5, ≥16,000 4 |
Transformer [29] | 96.9 | 2.55 | / | 4.3 | 128 × 512 | LogMel | 5, 16,000 |
MR-CNN_A [22] | 98.87 | 4.3 5 | 415.8 5 | / | 98 × 12 | MFCC | None |
AMNet-N [14] | 92.2 | 0.51 | 140 | 375 | 166 × 66 | STFT | 1, 16,000 |
AMNet-T [14] | 97.6 | 1.69 | 170 | 443 | |||
AMNet-S [14] | 99.4 | 5.47 | 370 | 481 | |||
ResNet1D_S | 97.61/97.1 ± 0.43 | 0.17 | 3.4 | 0.7 | 1 × 1001 | FFT | 0.5, 2000 |
97.62/97.2 ± 0.44 | |||||||
ResNet1D_B | 98.89/98.5 ± 0.28 | 2.1 | 5.0 | 1.1 | |||
98.81/98.4 ± 0.27 |
Model | Result (%) | Params (M) | FLOPs (M) | RT (ms) | Size | Feature | SD(s), ULF(Hz) | DU 1 (h) |
---|---|---|---|---|---|---|---|---|
Transformer [29] | 95.3 | 2.55 | / | 4.3 | 128 × 512 | LogMel | 5, 16,000 | 13.8 |
AResnet [23] | 99 | 9.47 | 1460 | / | 3 × 60 × 41 | LM + MFCC + CCTZ | 5, 22,050 | 15.5 |
MSLEFC [24] | 82.9 | 15.75 | 1556.9 | / | 9 × 6 × 2048 | MS_STFT + LE + FC | 3, 4096 | 47.2 |
End2end model [25] | 91.07 | / | / | 7.2 | 6 × 40 × 45 | None | 3.36, 16,000 | |
Hybird model [25] | 97.27 | / | / | 20.6 | 128 × 3 × 3 | MFCC | 3.36, 16,000 | |
ResNet1D_S | 95.72/95.3 ± 0.28 | 0.17 | 6.8 | 0.8 | 1 × 2001 | FFT | 1, 2000 | |
95.29/95.2 ± 0.16 | ||||||||
ResNet1D_B | 98.36/98.1 ± 0.15 | 2.1 | 13.3 | 1.2 | 1 × 3001 | 1.5, 2000 | ||
98.42/98.1 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Zhang, X.; Jin, A.; Lei, M.; Zeng, M.; Cao, P.; Na, Z.; Zeng, X. Efficient One-Dimensional Network Design Method for Underwater Acoustic Target Recognition. J. Mar. Sci. Eng. 2025, 13, 599. https://doi.org/10.3390/jmse13030599
Huang Q, Zhang X, Jin A, Lei M, Zeng M, Cao P, Na Z, Zeng X. Efficient One-Dimensional Network Design Method for Underwater Acoustic Target Recognition. Journal of Marine Science and Engineering. 2025; 13(3):599. https://doi.org/10.3390/jmse13030599
Chicago/Turabian StyleHuang, Qing, Xiaoyan Zhang, Anqi Jin, Menghui Lei, Mingmin Zeng, Peilin Cao, Zihan Na, and Xiangyang Zeng. 2025. "Efficient One-Dimensional Network Design Method for Underwater Acoustic Target Recognition" Journal of Marine Science and Engineering 13, no. 3: 599. https://doi.org/10.3390/jmse13030599
APA StyleHuang, Q., Zhang, X., Jin, A., Lei, M., Zeng, M., Cao, P., Na, Z., & Zeng, X. (2025). Efficient One-Dimensional Network Design Method for Underwater Acoustic Target Recognition. Journal of Marine Science and Engineering, 13(3), 599. https://doi.org/10.3390/jmse13030599