Experimental Study of the Wave Effects on a Ducted Twin Vertical Axis Tidal Turbine Wake Development
Abstract
1. Introduction
2. Material and Method
2.1. Turbine Model
2.2. Experimental Setup
2.3. Data Acquisition and Processing
3. Wave Effects on the Turbine Wake Development
3.1. Wake Structures of the 2-VATT
3.2. Wake Dynamics and Recovery
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Reference velocity measured far upstream of the turbine | |
Significant wave height | |
H | Top to bottom horizontal plates distance of Gen1’s fairing |
FC | Flood Tide Configuration |
EC | Ebb Tide Configuration |
Depth of the flume tank | |
Width of the flume tank | |
Free surface elevation | |
Wave peak period | |
Significant wave amplitude | |
Tip speed ratio | |
Refers to tests at the operating point providing the maximal | |
Wave frequency | |
L | Wavelength |
Turbulent kinetic energy | |
Reference surface taken as a rotor column’s one |
References
- Neill, S.; Haas, K.; Thiébot, J.; Yang, Z. A review of tidal energy—Resource, feedbacks, and environmental interactions. J. Renew. Sustain. Energy 2021, 13, 18. [Google Scholar] [CrossRef]
- O’Rourke, F.; Boyle, F.; Reynolds, A. Ireland’s tidal energy resource; An assessment of a site in the Bulls Mouth and the Shannon Estuary using measured data. Energy Convers. Manag. 2014, 87, 726–734. [Google Scholar] [CrossRef]
- Thomson, J.; Polagye, B.; Durgesh, V.; Richmond, M. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound. IEEE J. Ocean. Eng. 2012, 37, 363–374. [Google Scholar] [CrossRef]
- Lewis, M.; Neill, S.P.; Robins, P.E.; Hashemi, M.R. Resource assessment for future generations of tidal-stream energy arrays. Energy 2015, 83, 403–415. [Google Scholar] [CrossRef]
- Brevik, I.; Bjørn, A. Flume experiment on waves and currents. I. Rippled bed. Coast. Eng. 1979, 3, 149–177. [Google Scholar] [CrossRef]
- Kumar, A.; Hayatdavood, M. On wave–current interaction in deep and finite water depths. J. Ocean. Eng. Mar. Energy 2023, 9, 455–475. [Google Scholar] [CrossRef]
- Bahaj, A.; Myers, L.; Thomson, M.; Jorge, N. Characterising the wake of horizontal axis marine current turbines. In Proceedings of the 7th European Wave and Tidal Energy Conference, EWTEC, Porto, Portugal, 11–13 September 2007. [Google Scholar]
- Pinon, G.; Mycek, P.; Germain, G.; Rivoalen, E. Numerical simulation of the wake of marine current turbines with a particle method. Renew. Energy 2012, 46, 111–126. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy 2014, 66, 729–746. [Google Scholar] [CrossRef]
- Ebdon, T.; Allmark, M.; O’Doherty, D.; Mason-Jones, A.; O’Doherty, T.; Germain, G.; Gaurier, G. The impact of turbulence and turbine operating condition on the wakes of tidal turbines. Renew. Energy 2021, 165, 96–116. [Google Scholar] [CrossRef]
- Moreau, M.; Germain, G.; Facq, J.V.; Maurice, M.; Derveaux, C. Experimental study of two opposed flow directions effect on a ducted twin vertical axis tidal turbine. In Proceedings of the European Wave and Tidal Energy Conference, EWTEC, Bilbao, Spain, 3–7 September 2023. [Google Scholar]
- Müller, S.; Muhawenimana, V.; Wilson, C.; Ouro, P. Experimental investigation of the wake characteristics behind twin vertical axis turbines. Energy Convers. Manag. 2021, 247, 114768. [Google Scholar] [CrossRef]
- Ouro, P.; Dené, P.; Garcia Novo, P.; Stallard, T.; Kyozuda, Y.; Stansby, P. Power density capacity of tidal stream turbine arrays with horizontal and vertical axis turbines. J. Ocean. Eng. Mar. Energy 2022, 9, 203–218. [Google Scholar] [CrossRef]
- Luznik, L.; Flack, K.; Lust, E.; Taylor, K. The effect of surface waves on the performance characteristics of a model tidal turbine. Renew. Energy 2013, 58, 108–114. [Google Scholar] [CrossRef]
- Lust, L.; Luznik, L.; Flack, K.; Walker, J. The influence of surface gravity waves on marine current turbine performance. Int. J. Mar. Energy 2013, 3, 27–40. [Google Scholar] [CrossRef]
- Gaurier, B.; Davies, P.; Deuff, A.; Germain, G. Flume tank characterization of marine current turbine blade behaviour under current and wave loading. Renew. Energy 2013, 59, 1–12. [Google Scholar] [CrossRef]
- de Jesus Henriques, T.; Tedds, S.; Botsari, A.; Najafian, G.; Hedges, T.; Sutcliffe, C.; Owen, I.; Poole, R. The effects of wave–current interaction on the performance of a model horizontal axis tidal turbine. Int. J. Mar. Energy 2014, 8, 17–35. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Guan, D.; Zhang, C.; Gan, M. Wake Characteristics of a Tidal Stream Turbine under Combined Wave and Current. J. Coast. Res. 2020, 95, 1558–1562. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, W.; Zheng, J.; Cappietti, L.; Zhang, J.; Zheng, Y.; Fernández-Rodríguez, E. The influence of waves propagating with the current on the wake of a tidal stream turbine. Appl. Energy 2021, 290, 116729. [Google Scholar] [CrossRef]
- Stallard, T.; Mullings, H.; Draycott, S.; Ouro, P. Large-eddy simulations of interaction between surface waves and a tidal turbine wake in a turbulent channel. In Proceedings of the European Wave and Tidal Energy Conference, EWTEC, Bilbao, Spain, 3–7 September 2023; Volume 15. [Google Scholar]
- Moreau, M.; Germain, G.; Maurice, G.; Richard, A. Sea states influence on the behaviour of a bottom mounted full-scale twin vertical axis tidal turbine. Ocean. Eng. 2022, 265, 112582. [Google Scholar] [CrossRef]
- Magnier, M.; Gaurier, B.; Germain, G.; Druault, P. Analysis of the wake of a wide bottom-mounted obstacle in presence of surface wave following tidal current. In Trends in Renewable Energies Offshore; CRC Press: Boca Raton, FL, USA, 2022; pp. 151–159. [Google Scholar]
- Hardwick, J.; Mackay, E.; Ashton, I.; Smith, H.; Thies, P. Quantifying the Effects of Wave—Current Interactions on Tidal Energy Resource at Sites in the English Channel Using Coupled Numerical Simulations. Energies 2021, 14, 3625. [Google Scholar] [CrossRef]
- Ross, H.; Polagye, B. Effects of dimensionless parameters on the performance of a cross-flow current turbine. J. Fluids Struct. 2022, 114, 103726. [Google Scholar] [CrossRef]
- Moreau, M.; Germain, G.; Maurice, G. Experimental Investigation of Surface Waves Effect on a Ducted Twin Vertical Axis Tidal Turbine. J. Mar. Sci. Eng. 2023, 11, 1895. [Google Scholar] [CrossRef]
- Draycott, S.; Steynor, J.; Nambiar, A.; Sellar, B.; Venugopal, V. Rotational sampling of waves by tidal turbine blades. Renew. Energy 2020, 162, 2197–2209. [Google Scholar] [CrossRef]
- Bachant, P.; Wosnik, M. Characterising the near-wake of a cross-flow turbine. J. Turbul. 2015, 16, 392–410. [Google Scholar] [CrossRef]
In the Flume Tank | At Sea | |||||
---|---|---|---|---|---|---|
(m/s) | (Hz) | (m) | (m) | (m) | (s) | |
ECW | 0.8 | 0.4 | 0.10 | 4.9 | 3 | 11 |
FCW | 0.8 | 0.75 | 0.07 | 4.3 | 4 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linant, R.; Saouli, Y.; Germain, G.; Maurice, G. Experimental Study of the Wave Effects on a Ducted Twin Vertical Axis Tidal Turbine Wake Development. J. Mar. Sci. Eng. 2025, 13, 375. https://doi.org/10.3390/jmse13020375
Linant R, Saouli Y, Germain G, Maurice G. Experimental Study of the Wave Effects on a Ducted Twin Vertical Axis Tidal Turbine Wake Development. Journal of Marine Science and Engineering. 2025; 13(2):375. https://doi.org/10.3390/jmse13020375
Chicago/Turabian StyleLinant, Robin, Yanis Saouli, Grégory Germain, and Guillaume Maurice. 2025. "Experimental Study of the Wave Effects on a Ducted Twin Vertical Axis Tidal Turbine Wake Development" Journal of Marine Science and Engineering 13, no. 2: 375. https://doi.org/10.3390/jmse13020375
APA StyleLinant, R., Saouli, Y., Germain, G., & Maurice, G. (2025). Experimental Study of the Wave Effects on a Ducted Twin Vertical Axis Tidal Turbine Wake Development. Journal of Marine Science and Engineering, 13(2), 375. https://doi.org/10.3390/jmse13020375