High-Resolution Time-Frequency Feature Enhancement of Bowhead Whale Calls Based on Local Maximum Synchronous Extraction of Generalized S-Transforms
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Sources and Pre-Processing
3.2. Feature Extraction Methods
4. Results
Comparison of Feature Enhancement Methods
5. Application
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Full Name |
| AUV | Autonomous Underwater Vehicle |
| GST | Generalized S-Transform |
| LMSEGST | Local Maximum Simultaneous Extraction of Generalized S-Transforms |
| LMSST | Local Maximum Synchrosqueezing Transform |
| MSST | Multi-synchrosqueezing Transform |
| NCEI | ational Centers for Environmental Information |
| PAM | Passive Acoustic Monitoring |
| RBF | Radial Basis Function |
| SET | Synchro Extracting Transform |
| SNR | Signal-to-Noise Ratio |
| SST | Synchrosqueezing Transform |
| STFT | Short-Time Fourier Transform |
| SVM | Support Vector Machine |
| SWT | Synchrosqueezed Wavelet Transform |
| WGN | White Gaussian Noise |
| WT | Wavelet Transform |
References
- Laidre, K.L.; Stern, H.; Kovacs, K.M.; Lowry, L.; Moore, S.E.; Regehr, E.V.; Ferguson, S.H.; Wiig, Ø.; Boveng, P.; Angliss, R.P.; et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. J. Soc. Conserv. Biol. 2015, 29, 724–737. [Google Scholar] [CrossRef]
- Reeves, R.R.; Ewins, P.J.; Agbayani, S.; Heide-Jørgensen, M.P.; Kovacs, K.M.; Lydersen, C.; Suydam, R.; Elliott, W.; Polet, G.; van Dijk, Y.; et al. Distribution of endemic cetaceans in relation to hydrocarbon development and commercial shipping in a warming Arctic. Mar. Policy 2014, 44, 44375–44389. [Google Scholar] [CrossRef]
- Thomas, P.O.; Reeves, R.R.; Brownell, R.L., Jr. Status of the world’s baleen whales. Mar. Mammal Sci. 2016, 32, 682–734. [Google Scholar] [CrossRef]
- Ahonen, H.; Stafford, K.M.; de Steur, L.; Lydersen, C.; Wiig, Ø.; Kovacs, K.M. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered Bowhead whales. Mar. Pollut. Bull. 2017, 123, 97–112. [Google Scholar] [CrossRef]
- Estabrook, B.J.; Bonacci-Sullivan, L.A.; Harris, D.V.; Hodge, K.B.; Rahaman, A.; Rickard, M.E.; Salisbury, D.P.; Schlesinger, M.D.; Zeh, J.M.; Parks, S.E.; et al. Passive acoustic monitoring of baleen whale seasonal presence across the New York Bight. PLoS ONE 2025, 20, e0314857. [Google Scholar] [CrossRef]
- Bahoura, M.; Simard, Y. Blue whale calls classification using short-time Fourier and wavelet packet transforms and artificial neural network. Digit. Signal Process. 2009, 20, 1256–1263. [Google Scholar] [CrossRef]
- Kaplun, D.; Voznesensky, A.; Romanov, S.; Andreev, V.; Butusov, D. Classification of Hydroacoustic Signals Based on Harmonic Wavelets and a Deep Learning Artificial Intelligence System. Appl. Sci. 2020, 10, 3097. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, B.; Yu, W. Passive CFAR detection based on continuous wavelet transform of sound signals of marine animal. In Proceedings of the 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 22–25 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Oberlin, T.; Meignen, S.; Perrier, V. The Fourier-based synchrosqueezing transform. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; IEEE: Piscataway, NJ, USA; pp. 315–319. [Google Scholar]
- Yu, G.; Wang, Z.; Zhao, P. Multi-synchrosqueezing Transform. IEEE Trans. Ind. Electron. 2019, 66, 5441–5455. [Google Scholar] [CrossRef]
- Gang, Y.U. A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals. J. Sound Vib. 2021, 492, 115813. [Google Scholar]
- Yu, G.; Wang, Z.; Zhao, P.; Li, Z. Local maximum synchrosqueezing transform: An energy-concentrated time-frequency analysis tool. Mech. Syst. Signal Process. 2019, 117, 537–552. [Google Scholar] [CrossRef]
- Erbs, F.; van der Schaar, M.; Weissenberger, J.; Zaugg, S.; André, M. Contribution to unravel variability in Bowhead whale songs and better understand its ecological significance. Sci. Rep. 2021, 11, 168. [Google Scholar] [CrossRef]
- Stafford, M.K. Increasing detections of killer whales (Orcinus orca), in the Pacific Arctic. Mar. Mammal Sci. 2019, 35, 696–706. [Google Scholar] [CrossRef]
- Stafford, K.M.; Lydersen, C.; Wiig, Ø.; Kovacs, K.M. Data from: Extreme diversity in the songs of Spitsbergen’s Bowhead whales. Biol. Lett. 2018, 14, 20180056. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.R. Study on Identification and Classification Methods of Whale Acoustic Signals between Whale Species. Master’s Thesis, Tianjin University, Tianjin, China, 2018. [Google Scholar]
- Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef]
- Yu, G.; Yu, M.J.; Xu, C.Y. Synchroextracting transform. IEEE Trans. Ind. Electron. 2017, 64, 8042–8054. [Google Scholar] [CrossRef]
- Adams, M.D.; Kossentini, F.; Ward, R.K. Generalized S Transform. IEEE Trans. Signal Process. 2002, 50, 2831–2842. [Google Scholar] [CrossRef]
- Wang, Z.H. Research and Application of Wavelet Time-Frequency Synchronous Compression Transform Method. Master’s Thesis, Xidian University, Xi’an, China, 2019. [Google Scholar]
- Baraniuk, R.G.; Flandrin, P.; Janssen, A.J.E.M.; Michel, O.J.J. Measuring timefrequency information content using the Renyi entropies. IEEE Trans. Inf. Theory 2001, 47, 1391–1409. [Google Scholar] [CrossRef]
- Stanković, L. A measure of some time–frequency distributions concentration. Signal Process. 2001, 81, 621–631. [Google Scholar] [CrossRef]
- George, J.C.; Clark, C.; Carroll, G.M.; Ellison, W.T. Observation on the icebreaking and ice navigation behavior of migrating Bowhead whales (Balaena mysticetus) near Point Barrow, Alaska, Spring 1985. Arctic 1989, 42, 24–30. [Google Scholar] [CrossRef]
- Peter, C. The Bowhead Whale. Balaena mysticetus: Biology and Human Interactions. Mar. Mammal Sci. 2021, 37, 1572–1573. [Google Scholar] [CrossRef]
- Towers, J.R.; Pilkington, J.F.; Mason, E.A.; Mason, E.V. A Bowhead whale in the eastern North Pacific. Ecol. Evol. 2022, 12, e8664. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth Alter, S.; Rosenbaum, H.C.; Postma, L.D.; Whitridge, P.; Gaines, C.; Weber, D.; Egan, M.G.; Lindsay, M.; Amato, G.; Dueck, L.; et al. Gene flow on ice: The role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in Bowhead whales (Balaena mysticetus). Ecol. Evol. 2012, 2, 2895–2911. [Google Scholar] [CrossRef] [PubMed]
- NOAA Fisheries. 2018 Marine Mammal Stock Assessment Reports by Species/Stock: Bowhead Whale. Available online: https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-species-stock (accessed on 24 July 2020).









| Serial Number | Sampling Frequency (Hz) | Is the Bowhead whale Signal Evident (Yes/No) | Recording Location | Whale Band |
|---|---|---|---|---|
| 1 | 10,240 | Yes | the Bering Strait | 500–3000 |
| … | … | … | … | 200–2000 |
| 5 | 10,240 | Yes | the Bering Strait | 100–3000 |
| 6 | 10,240 | Yes | the Bering Strait | 100–2500 |
| … | … | … | … | … |
| 11 | 10,240 | Yes | Barrow, Alaska | 50–2000 |
| 12 | 10,000 | Yes | Beaufort Sea Bailey Islands | 100–500 |
| 13 | 10,000 | Yes | Beaufort Sea Bailey Islands | 50–2500 |
| … | … | … | … | … |
| 59 | 10,000 | Yes | Beaufort Sea Bailey Islands | 450–3000 |
| 60 | 10,000 | Yes | Beaufort Sea Bailey Islands | 500–4500 |
| Unit Type | Unit Sub-Type | Min f (Hz) | Max f (Hz) | Delta f (Hz) | Start f (Hz) | End f (Hz) | Med f (Hz) | Delta t (s) |
|---|---|---|---|---|---|---|---|---|
| M | 1055 | 2160 | 1105 | 1724 | 1142 | 1672 | 8.46 | |
| MSG1 | 1077 | 2069 | 1532 | 2002 | 1122 | 2012 | 14.1 | |
| MSG5 | 762 | 2586 | 1823 | 1817 | 820 | 1894 | 10.5 | |
| MSG11 | 1271 | 1771 | 501 | 1722 | 1438 | 1512 | 9.09 | |
| MSG2 | 1163 | 2246 | 1083 | 1962 | 1225 | 1923 | 8.84 | |
| Mo | 1046 | 2015 | 1060 | 1654 | 1125 | 1598 | 7.63 | |
| S | 461 | 872 | 410 | 593 | 803 | 728 | 1.4 | |
| Vigh | 973 | 1605 | 631 | 1461 | 1155 | 1095 | 1 | |
| Short R | 234 | 319 | 84 | 278 | 272 | 279 | 7.3 | |
| Long R | 221 | 298 | 76 | 265 | 258 | 257 | 4.5 | |
| sLdown | 266 | 370 | 104 | 309 | 306 | 331 | 14 | |
| sLFconst | 83 | 202 | 119 | 180 | 110 | 147 | 0.2 | |
| sLFconst2 | 341 | 412 | 71 | 383 | 370 | 376 | 0.3 | |
| Minter | 589 | 713 | 123 | 673 | 623 | 627 | 0.1 | |
| MiSG3 | 869 | 1153 | 284 | 1135 | 917 | 1049 | 0.6 | |
| Mio | 1137 | 1276 | 139 | 1254 | 1184 | 1198 | 1.2 | |
| sup | 708 | 1079 | 370 | 1064 | 758 | 958 | 0.3 |
| Signal-to-Noise Ratio | STFT | GST | LMSST | LMSEGST |
|---|---|---|---|---|
| 15 dB | 22.49 | 22.43 | 17.49 | 16.12 |
| 10 dB | 22.52 | 22.47 | 17.52 | 16.16 |
| 5 dB | 22.59 | 22.53 | 17.60 | 16.23 |
| Time | STFT | LMSEGST |
|---|---|---|
| 20 November 2020 | 19.06 | 13.55 |
| 20 June 2021 | 20.23 | 15.05 |
| 20 November 2021 | 18.96 | 13.73 |
| 20 June 2022 | 20.21 | 15.08 |
| 20 August 2022 | 18.15 | 12.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Feng, R.; Zhang, X.; Li, P.; Su, B. High-Resolution Time-Frequency Feature Enhancement of Bowhead Whale Calls Based on Local Maximum Synchronous Extraction of Generalized S-Transforms. J. Mar. Sci. Eng. 2025, 13, 2332. https://doi.org/10.3390/jmse13122332
Zhu M, Feng R, Zhang X, Li P, Su B. High-Resolution Time-Frequency Feature Enhancement of Bowhead Whale Calls Based on Local Maximum Synchronous Extraction of Generalized S-Transforms. Journal of Marine Science and Engineering. 2025; 13(12):2332. https://doi.org/10.3390/jmse13122332
Chicago/Turabian StyleZhu, Mingchao, Rui Feng, Xiaofeng Zhang, Pengsheng Li, and Binghua Su. 2025. "High-Resolution Time-Frequency Feature Enhancement of Bowhead Whale Calls Based on Local Maximum Synchronous Extraction of Generalized S-Transforms" Journal of Marine Science and Engineering 13, no. 12: 2332. https://doi.org/10.3390/jmse13122332
APA StyleZhu, M., Feng, R., Zhang, X., Li, P., & Su, B. (2025). High-Resolution Time-Frequency Feature Enhancement of Bowhead Whale Calls Based on Local Maximum Synchronous Extraction of Generalized S-Transforms. Journal of Marine Science and Engineering, 13(12), 2332. https://doi.org/10.3390/jmse13122332

