Analyzing the Impact of Climate Resilience on Container Terminal Throughput: A Continent-Wide Comparative Study
Abstract
1. Introduction
1.1. Background
1.2. Aim of the Study
1.3. Research Gap
2. Literature Review
2.1. Climate Change and Climate Resilience
2.2. Climate Change and Resilience in the Port Logistics Industry
2.3. Climate Resilience Indicators and Country-Specific Status
3. Data and Methods
3.1. Data
3.2. Methodology
3.3. Research Design
- Research Hypothesis 1: Climate resilience (ND-GAIN index) of the global continent has a significant impact on the container port throughput of that continent.
- Research Hypothesis 2: Climate resilience (ND-GAIN index) of the African continent has a significant impact on the container port throughput of that continent.
- Research Hypothesis 3: Climate resilience (ND-GAIN index) of Asia continent has a significant impact on the container port throughput of that continent.
- Research Hypothesis 4: Climate resilience (ND-GAIN index) of the European continent has a significant impact on the container port throughput of that continent.
- Research Hypothesis 5: Climate resilience (ND-GAIN index) of Latin America continent has a significant impact on the container port throughput of that continent.
- Research Question 6 (Supplementary): Could climate resilience (ND-GAIN index) in North American and Oceanian countries show a consistent correlation with container port throughput on their respective continents?
4. Results
4.1. Descriptive Statistics and Correlation Analysis
4.2. Panel Unit Root Tests
4.3. Hausman Specification Test
4.4. Regression Results: Global and Continental Comparisons
4.4.1. Global
4.4.2. Continental
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Jing, Y. Ship Collision Risk Analysis in Port Waters Integrating GRA Algorithm and BPNN. Transp. Saf. Environ. 2025, 7, tdaf012. [Google Scholar] [CrossRef]
- Chen, X.; Ma, F.; Wu, Y.; Han, B.; Luo, L.; Biancardo, S.A. MFMDepth: MetaFormer-Based Monocular Metric Depth Estimation for Distance Measurement in Ports. Comput. Ind. Eng. 2025, 207, 111325. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Sea Level Projections to AD2500 with a New Generation of Climate Change Scenarios. Glob. Planet. Change 2012, 80, 14–20. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate Change Risk to Global Port Operations. Nat. Clim. Change 2021, 11, 14–20. [Google Scholar] [CrossRef]
- Becker, A.H.; Matson, P.; Fischer, M.; Mastrandrea, M.D. Towards Seaport Resilience for Climate Change Adaptation: Stakeholder Perceptions of Hurricane Impacts in Gulfport (MS) and Providence (RI). Prog. Plan. 2015, 99, 1–49. [Google Scholar] [CrossRef]
- Wang, K.; Yang, H.; Zhang, A. Seaport Adaptation to Climate Change-Related Disasters: Terminal Operator Market Structure and Inter- and Intra-Port Coopetition. Spat. Econ. Anal. 2020, 15, 311–335. [Google Scholar] [CrossRef]
- Greenan, B.J.; Shackell, N.L.; Ferguson, K.; Greyson, P.; Cogswell, A.; Brickman, D.; Wang, Z.; Cook, A.; Brennan, C.E.; Saba, V.S. Climate Change Vulnerability of American Lobster Fishing Communities in Atlantic Canada. Front. Mar. Sci. 2019, 6, 579. [Google Scholar] [CrossRef]
- Arslanalp, S.; Koepke, R.; Sozzi, A.; Verschuur, J. Climate Change Is Disrupting Global Trade; International Monetary Fund (IMF): Washington, DC, USA, 2023. [Google Scholar]
- Korea Ministry of Oceans and Fisheries. Measures to Strengthen Climate Change Response in Ports and Hinterland Areas; Korea Ministry of Oceans and Fisheries: Busan, Republic of Korea, 2023.
- Asmamaw, M.; Mereta, S.T.; Ambelu, A. Exploring Households’ Resilience to Climate Change-Induced Shocks Using Climate Resilience Index in Dinki Watershed, Central Highlands of Ethiopia. PLoS ONE 2019, 14, e0219393. [Google Scholar] [CrossRef]
- Feldmeyer, D.; Wilden, D.; Jamshed, A.; Birkmann, J. Regional Climate Resilience Index: A Novel Multimethod Comparative Approach for Indicator Development, Empirical Validation and Implementation. Ecol. Indic. 2020, 119, 106861. [Google Scholar] [CrossRef]
- Grant, R.; Roy, S.S.; Zablah, C.J.; Aquino, P.; Simpson, M.; Viala, P. Climate Adaptation and Resilience Indices for the Caribbean Region: An Assessment of Four Leading Indices. Clim. Dev. 2023, 1–11. [Google Scholar] [CrossRef]
- Chen, C.; He, W. Resilience Measurement and Enhancement Strategies for Meizhou Bay Port Enterprises. Sustainability 2024, 16, 5708. [Google Scholar] [CrossRef]
- Garcia-Alonso, L.; Moura, T.G.Z.; Roibas, D. The Effect of Weather Conditions on Port Technical Efficiency. Mar. Policy 2020, 113, 103816. [Google Scholar] [CrossRef]
- Becker, A.; Ng, A.K.Y.; McEvoy, D.; Mullett, J. Implications of Climate Change for Shipping: Ports and Supply Chains. WIREs Clim. Change 2018, 9, e508. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-Ecological Resilience to Coastal Disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Tyler, S.; Moench, M. A Framework for Urban Climate Resilience. Clim. Dev. 2012, 4, 311–326. [Google Scholar] [CrossRef]
- Kythreotis, A.P.; Bristow, G.I. The ‘Resilience Trap’: Exploring the Practical Utility of Resilience for Climate Change Adaptation in UK City-Regions. Reg. Stud. 2017, 51, 1530–1541. [Google Scholar] [CrossRef]
- Kates, R.W.; Travis, W.R.; Wilbanks, T.J. Transformational Adaptation When Incremental Adaptations to Climate Change Are Insufficient. Proc. Natl. Acad. Sci. USA 2012, 109, 7156–7161. [Google Scholar] [CrossRef]
- León-Mateos, F.; Sartal, A.; López-Manuel, L.; Quintás, M.A. Adapting Our Sea Ports to the Challenges of Climate Change: Development and Validation of a Port Resilience Index. Mar. Policy 2021, 130, 104573. [Google Scholar] [CrossRef]
- United Nations. United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1992. [Google Scholar]
- United Nations. Adoption of the Paris Agreement. In United Nations Framework Convention on Climate Change (UNFCCC); Proposal by the President; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Howard-Grenville, J.; Buckle, S.J.; Hoskins, B.J.; George, G. Climate Change and Management. AMJ 2014, 57, 615–623. [Google Scholar] [CrossRef]
- Shi, L.Y.; Cui, S.H. Research Progress of Climate Change Effects on Urban Ecosystem. Environ. Sci. Technol. 2010, 33, 193–197. [Google Scholar]
- Odeyomi, O.A.; Ejimakor, G.; Isikhuemhen, O.S. Effects of Climate Change on Crop Yield: Is It a Benefit or Menace? ESI Prepr. 2024, 20, 1. [Google Scholar] [CrossRef]
- Klein, R.J.; Schipper, E.L.F.; Dessai, S. Integrating Mitigation and Adaptation into Climate and Development Policy: Three Research Questions. Environ. Sci. Policy 2005, 8, 579–588. [Google Scholar] [CrossRef]
- Locatelli, B. Fighting Climate Change. Local, Global: Integrating Mitigation and Adaptation. Perspective 2010, 3, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Göpfert, C.; Wamsler, C.; Lang, W. A Framework for the Joint Institutionalization of Climate Change Mitigation and Adaptation in City Administrations. Mitig. Adapt. Strateg. Glob. Change 2019, 24, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Lowe, J.A. Benefits of Mitigation of Climate Change for Coastal Areas. Glob. Environ. Change 2004, 14, 229–244. [Google Scholar] [CrossRef]
- Laukkonen, J.; Blanco, P.K.; Lenhart, J.; Keiner, M.; Cavric, B.; Kinuthia-Njenga, C. Combining Climate Change Adaptation and Mitigation Measures at the Local Level. Habitat Int. 2009, 33, 287–292. [Google Scholar] [CrossRef]
- Park, S.E.; Marshall, N.A.; Jakku, E.; Dowd, A.M.; Howden, S.M.; Mendham, E.; Fleming, A. Informing Adaptation Responses to Climate Change through Theories of Transformation. Glob. Environ. Change 2012, 22, 115–126. [Google Scholar] [CrossRef]
- Working Group III. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Nelson, D.R. Adaptation and Resilience: Responding to a Changing Climate. WIREs Clim. Change 2011, 2, 113–120. [Google Scholar] [CrossRef]
- Environmental Performance Index. Available online: https://epi.yale.edu/ (accessed on 7 November 2025).
- Climate Risk Index 2025|Germanwatch e.V. Available online: https://www.germanwatch.org/en/cri (accessed on 7 November 2025).
- Yang, Z.; Lau, Y.; Poo, M.C.-P.; Yin, J.; Yang, Z. Port Resilience to Climate Change in the Greater Bay Area. Transp. Res. Part D Transp. Environ. 2025, 142, 104681. [Google Scholar] [CrossRef]
- JPMorgan Chase & Co. Sea Change: Port Infrastructure, Climate Risks and the Future of Global Trade; JPMorgan Chase & Co.: New York, NY, USA, 2025. [Google Scholar]
- Cappel, N. Transportation Impacts from Hurricane Harvey; Zipline Logistics: Columbus, OH, USA, 2017. [Google Scholar]
- Vineyard, J. Super Typhoon Hagibis Threatens Japan and Supply Chain; Universal Cargo: Los Angeles, CA, USA, 2019. [Google Scholar]
- Chowdhuri, R. Cyclone Amphan: Kolkata Port Trust Suspends Operations as Precautionary Measure|Cyclone Amphan: Kolkata Port Trust Suspends Operations as Precautionary Measure. Available online: https://www.deccanchronicle.com/nation/current-affairs/200520/cyclone-amphan-kolkata-port-trust-suspends-operations-as-precautionar.html (accessed on 5 November 2025).
- Wright, S. Climate Change Risk Management for Ports. In Proceedings of the Ports 2013, Seattle, WA, USA, 25–28 August 2013; American Society of Civil Engineers: Seattle, WA, USA, 2013; pp. 272–281. [Google Scholar]
- Nursey-Bray, M.; Blackwell, B.; Brooks, B.; Campbell, M.L.; Goldsworthy, L.; Pateman, H.; Rodrigues, I.; Roome, M.; Wright, J.T.; Francis, J.; et al. Vulnerabilities and Adaptation of Ports to Climate Change. J. Environ. Plan. Manag. 2013, 56, 1021–1045. [Google Scholar] [CrossRef]
- Couñago-Blanco, E.; León-Mateos, F.; Sartal, A.; López-Manuel, L. Improving the Resilience of Seaports to the Effects of Climate Change: Port Resilience Index as a Tool for Decision-Making. In Handbook of Energy and Environment in the 21st Century; CRC Press: Boca Raton, FL, USA, 2024; pp. 376–401. [Google Scholar]
- Becker, A.; Caldwell, M.R. Stakeholder Perceptions of Seaport Resilience Strategies: A Case Study of Gulfport (Mississippi) and Providence (Rhode Island). Coast. Manag. 2015, 43, 1–34. [Google Scholar] [CrossRef]
- Ng, A.K.; Chen, S.-L.; Cahoon, S.; Brooks, B.; Yang, Z. Climate Change and the Adaptation Strategies of Ports: The Australian Experiences. Res. Transp. Bus. Manag. 2013, 8, 186–194. [Google Scholar] [CrossRef]
- Camus, P.; Tomás, A.; Díaz-Hernández, G.; Rodríguez, B.; Izaguirre, C.; Losada, I.J. Probabilistic Assessment of Port Operation Downtimes under Climate Change. Coast. Eng. 2019, 147, 12–24. [Google Scholar] [CrossRef]
- Sierra, J.P.; Genius, A.; Lionello, P.; Mestres, M.; Mösso, C.; Marzo, L. Modelling the Impact of Climate Change on Harbour Operability: The Barcelona Port Case Study. Ocean Eng. 2017, 141, 64–78. [Google Scholar] [CrossRef]
- Vedeld, T.; Coly, A.; Ndour, N.M.; Hellevik, S. Climate Adaptation at What Scale? Multi-Level Governance, Resilience, and Coproduction in Saint Louis, Senegal. Nat. Hazards 2016, 82, 173–199. [Google Scholar] [CrossRef]
- Cevik, S. Waiting for Godot? The Case for Climate Change Adaptation and Mitigation in Small Island States. J. Environ. Econ. Policy 2022, 11, 420–437. [Google Scholar] [CrossRef]
- Cevik, S.; Ghazanchyan, M. Perfect Storm: Climate Change and Tourism. J. Glob. Dev. 2021, 12, 47–61. [Google Scholar] [CrossRef]
- Lo, A.Y.; Chow, A.T. The Relationship between Climate Change Concern and National Wealth. Clim. Change 2015, 131, 335–348. [Google Scholar] [CrossRef]
- University of Notre Dame Global Adaptation Initiative. Country Index Technical Report; University of Notre Dame Global Adaptation Initiative: Notre Dame, IN, USA, 2024. [Google Scholar]
- UNCTAD Data Hub. Available online: https://unctadstat.unctad.org/EN/Index.html (accessed on 7 November 2025).
- Wan, Y.; Zhang, A.; Yuen, A.C.L. Urban Road Congestion, Capacity Expansion and Port Competition: Empirical Analysis of US Container Ports. Marit. Policy Manag. 2013, 40, 417–438. [Google Scholar] [CrossRef]
- Jiang, J.; Lee, L.H.; Chew, E.P.; Gan, C.C. Port Connectivity Study: An Analysis Framework from a Global Container Liner Shipping Network Perspective. Transp. Res. Part E Logist. Transp. Rev. 2015, 73, 47–64. [Google Scholar] [CrossRef]
- Jia, H.; Daae Lampe, O.; Solteszova, V.; Strandenes, S.P. Norwegian Port Connectivity and Its Policy Implications. Marit. Policy Manag. 2017, 44, 956–966. [Google Scholar] [CrossRef]
- Wang, C.; Dou, X.; Haralambides, H. Port Centrality and the Composite Connectivity Index: Introducing a New Concept in Assessing the Attractiveness of Hub Ports. Marit. Econ. Logist. 2022, 24, 67–91. [Google Scholar] [CrossRef]
- Baltagi, B.H. Panel Data Methods. In Handbook of Applied Economic Statistics; CRC Press: Boca Raton, FL, USA, 1998; pp. 311–323. [Google Scholar]
- Berrington, A.; Smith, P.; Sturgis, P. An Overview of Methods for the Analysis of Panel Data; NCRM Methods Review Papers, No. NCRM/007; ESRC National Centre for Research Methods: Southampton, UK, 2006. [Google Scholar]
- da Silva, J.C. The Analysis of Cross-Sectional Time Series Data. Institute of Statistics Mimeograph Series No. 1011. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 1975. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Sheytanova, T. The Accuracy of the Hausman Test in Panel Data: A Monte Carlo Study. Master’s Thesis, Örebro University School of Business, Örebro, Sweden, 2015. [Google Scholar]
- Marshall, G.; Jonker, L. An Introduction to Descriptive Statistics: A Review and Practical Guide. Radiography 2010, 16, e1–e7. [Google Scholar] [CrossRef]
- Baumohl, E.; Lyocsa, S. Stationarity of Time Series and the Problem of Spurious Regression; SSRN 1480682; Social Science Research Network: Rochester, NY, USA, 2009. [Google Scholar]
- Lin, X.; Kim, K.-S. Empirical Analysis on the Factors Affecting the Consumption of Aquatic Products in China Using Panel Data. J. Fish. Bus. Adm. 2013, 44, 19–33. [Google Scholar] [CrossRef]
- Guillén Bolaños, T.; Scheffran, J.; Máñez Costa, M. Climate Adaptation and Successful Adaptation Definitions: Latin American Perspectives Using the Delphi Method. Sustainability 2022, 14, 5350. [Google Scholar] [CrossRef]
- Vignola, R.; Esquivel, M.J.; Harvey, C.; Rapidel, B.; Bautista-Solis, P.; Alpizar, F.; Donatti, C.; Avelino, J. Ecosystem-Based Practices for Smallholders’ Adaptation to Climate Extremes: Evidence of Benefits and Knowledge Gaps in Latin America. Agronomy 2022, 12, 2535. [Google Scholar] [CrossRef]
- Castellanos, E.J.; Lemos, M.F.; Astigarraga, L.; Chacón, N.; Cuvi, N.; Huggel, C.; Miranda, L.; Moncassim Vale, M.; Pierre Ometto, J.; Peri, P.L. Central and South America; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Lin, Y.; Ng, A.K.Y.; Zhang, A.; Xu, Y.; He, Y. Climate Change Adaptation by Ports: The Attitude of Chinese Port Organizations. Marit. Policy Manag. 2020, 47, 873–884. [Google Scholar] [CrossRef]
- Casado-Asensio, J.; Steurer, R. Integrated Strategies on Sustainable Development, Climate Change Mitigation and Adaptation in Western Europe: Communication Rather than Coordination. J. Public Policy 2014, 34, 437–473. [Google Scholar] [CrossRef]
- Chen, J.; Fei, Y.; Zhu, Y.; Zhang, F. Allometric Relationship between Port Throughput Growth and Urban Population: A Case Study of Shanghai Port and Shanghai City. Adv. Mech. Eng. 2018, 10, 1687814018760933. [Google Scholar] [CrossRef]







| Variable Name | Variable Definition (Unit) | Continent (Number of Countries) | Minimum | Median | Maximum | Mean | S.D. |
|---|---|---|---|---|---|---|---|
| ND-GAIN | Climate Resilience (point) | Global (83) | 3.502 | 3.974 | 4.337 | 3.968 | 0.1985 |
| Africa (16) | 3.502 | 3.767 | 4.057 | 3.773 | 0.1405 | ||
| Asia (19) | 3.534 | 3.965 | 4.264 | 3.947 | 0.1854 | ||
| Europe (24) | 3.886 | 4.137 | 4.337 | 4.144 | 0.0989 | ||
| North America (2) | 4.214 | 4.236 | 4.288 | 4.240 | 0.0219 | ||
| Latin America (20) | 3.685 | 3.875 | 4.153 | 3.877 | 0.1056 | ||
| Oceania (2) | 4.229 | 4.244 | 4.304 | 4.257 | 0.0274 | ||
| Population | Population (thousands) | Global (83) | 5.617 | 9.743 | 14.171 | 9.729 | 1.7544 |
| Africa (16) | 6.234 | 9.917 | 12.316 | 9.499 | 1.6981 | ||
| Asia (19) | 7.922 | 11.168 | 14.171 | 11.031 | 1.5992 | ||
| Europe (24) | 6.047 | 9.244 | 11.895 | 9.265 | 1.4432 | ||
| North America (2) | 10.44 | 11.61 | 12.74 | 11.60 | 1.1209 | ||
| Latin America (20) | 5.617 | 9.220 | 12.256 | 9.093 | 1.6403 | ||
| Oceania (2) | 8.377 | 9.274 | 10.174 | 9.278 | 0.8367 | ||
| GDP | Real GDP (1,000,000 USD) | Global (83) | 7.29 | 12.26 | 16.87 | 12.01 | 1.8986 |
| Africa (16) | 7.29 | 10.73 | 13.19 | 10.45 | 1.6690 | ||
| Asia (19) | 10.69 | 12.79 | 16.61 | 13.09 | 1.3106 | ||
| Europe (24) | 9.05 | 12.64 | 15.11 | 12.50 | 1.6075 | ||
| North America (2) | 14.15 | 15.49 | 16.87 | 15.50 | 1.2611 | ||
| Latin America (20) | 8.342 | 11.038 | 14.458 | 11.185 | 1.5568 | ||
| Oceania (2) | 11.94 | 13.10 | 14.20 | 13.09 | 0.9889 | ||
| LSCI | Liner Shipping Connectivity Index (point) | Global (83) | 2.448 | 4.675 | 7.043 | 4.743 | 0.8412 |
| Africa (16) | 2.448 | 4.216 | 5.503 | 4.250 | 0.6234 | ||
| Asia (19) | 3.237 | 5.398 | 7.043 | 5.387 | 0.7771 | ||
| Europe (24) | 2.959 | 4.708 | 6.069 | 4.775 | 0.8550 | ||
| North America (2) | 4.951 | 5.620 | 6.277 | 5.614 | 0.5858 | ||
| Latin America (20) | 2.937 | 4.545 | 5.292 | 4.397 | 0.5955 | ||
| Oceania (2) | 4.428 | 4.795 | 5.069 | 4.766 | 0.2545 | ||
| Throughput | Container terminal throughput (TEU) | Global (83) | 10.80 | 14.61 | 19.41 | 14.65 | 1.5587 |
| Africa (16) | 10.80 | 13.50 | 15.99 | 13.63 | 1.1641 | ||
| Asia (19) | 12.72 | 16.07 | 19.41 | 16.07 | 1.2110 | ||
| Europe (24) | 11.87 | 14.30 | 16.69 | 14.49 | 1.3631 | ||
| North America (2) | 15.36 | 16.66 | 17.95 | 16.66 | 1.0970 | ||
| Latin America (20) | 11.13 | 14.24 | 16.28 | 14.02 | 1.2757 | ||
| Oceania (2) | 14.66 | 15.37 | 16.05 | 15.39 | 0.5152 |
| Continent Name | Variable Name | Level Variable | 1 Diff. Variable |
|---|---|---|---|
| Global | ND-GAIN | −4.7820 *** | - |
| Population | −7.3629 *** | - | |
| GDP | −6.1997 *** | - | |
| LSCI | −7.2378 *** | - | |
| Throughput | −6.4524 *** | - | |
| Africa | ND-GAIN | −3.4953 ** | - |
| Population | −3.8796 ** | - | |
| GDP | −3.9125 ** | - | |
| LSCI | −3.1209 | −5.5664 *** | |
| Throughput | −3.6151 ** | - | |
| Asia | ND-GAIN | −3.5850 ** | - |
| Population | −3.1693 * | −5.8199 *** | |
| GDP | −3.2089 * | −5.9427 *** | |
| LSCI | −3.6869 ** | - | |
| Throughput | −3.7206 ** | - | |
| Europe | ND-GAIN | −3.0224 | −6.7713 *** |
| Population | −4.0127 *** | - | |
| GDP | −3.5358 ** | - | |
| LSCI | −4.4979 *** | - | |
| Throughput | −4.2538 *** | - | |
| Latin America | ND-GAIN | −2.7413 | −6.3329 *** |
| Population | −3.9849 *** | - | |
| GDP | −4.2490 *** | - | |
| LSCI | −4.3868 *** | - | |
| Throughput | −4.1267 *** | - |
| Continent Name | Chi-Sq. Statistic | Chi-Sq. d.f. | Prob. |
|---|---|---|---|
| Global | 580.92 | 4 | 0.000 *** |
| Africa | 149.45 | 4 | 0.000 *** |
| Asia | 108.93 | 4 | 0.000 *** |
| Europe | 75.72 | 4 | 0.000 *** |
| Latin America | 42.666 | 4 | 0.000 *** |
| Contents | Fixed-Effects Model | |||
|---|---|---|---|---|
| Coefficient | Std. Error | t-Value | p > [t] | |
| ND-GAIN | 0.5474 | 0.1430 | 3.827 | 0.000 *** |
| Population | 0.2006 | 0.1153 | 1.740 | 0.082 * |
| GDP | 0.8508 | 0.0507 | 16.774 | 0.001 *** |
| LSCI | 0.6992 | 0.0471 | 14.844 | 0.001 *** |
| F-test | 326.398 (0.001) *** | |||
| R2 | 0.5682 | |||
| Contents | Fixed Effect Model | |||
|---|---|---|---|---|
| Coefficient | Std. Error | t-Value | p > [t] | |
| ND-GAIN | 1.5742 | 0.4540 | 3.467 | 0.000 *** |
| Population | 0.4336 | 0.2867 | 1.512 | 0.1321 |
| GDP | 0.6795 | 0.1572 | 4.321 | 0.000 *** |
| LSCI | 0.6966 | 0.1213 | 5.740 | 0.000 *** |
| F-test | 45.6303 (0.000) *** | |||
| R2 | 0.4926 | |||
| Contents | Fixed-Effects Model | |||
|---|---|---|---|---|
| Coefficient | Std. Error | t-Value | p > [t] | |
| ND-GAIN | 0.2079 | 0.1178 | 1.764 | 0.079 * |
| Population | −0.2098 | 0.1260 | −1.665 | 0.097 * |
| GDP | 0.9489 | 0.0563 | 16.855 | 0.001 *** |
| LSCI | 0.6003 | 0.0635 | 9.447 | 0.001 *** |
| F-test | 353.104 (0.001) *** | |||
| R2 | 0.8631 | |||
| Contents | Fixed-Effects Model | |||
|---|---|---|---|---|
| Coefficient | Std. Error | t-Value | p > [t] | |
| ND-GAIN | 2.5683 | 0.5705 | 4.502 | 0.001 *** |
| Population | −0.6891 | 0.3341 | −2.063 | 0.040 ** |
| GDP | 0.9112 | 0.0860 | 10.586 | 0.001 *** |
| LSCI | 0.8333 | 0.0856 | 9.735 | 0.001 *** |
| F-test | 89.348 (0.001) *** | |||
| R2 | 0.5572 | |||
| Contents | Fixed-Effects Model | |||
|---|---|---|---|---|
| Coefficient | Std. Error | t-Value | p > [t] | |
| ND-GAIN | −0.7110 | 0.2992 | −2.376 | 0.018 ** |
| Population | 1.5704 | 0.2764 | 5.680 | 0.001 *** |
| GDP | 0.6357 | 0.1166 | 5.452 | 0.001 *** |
| LSCI | 0.3767 | 0.0936 | 4.023 | 0.001 *** |
| F-test | 77.491 (0.001) *** | |||
| R2 | 0.5677 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Ryu, W.; Kim, Y.-s.; Lee, C.-h. Analyzing the Impact of Climate Resilience on Container Terminal Throughput: A Continent-Wide Comparative Study. J. Mar. Sci. Eng. 2025, 13, 2225. https://doi.org/10.3390/jmse13122225
Lee J, Ryu W, Kim Y-s, Lee C-h. Analyzing the Impact of Climate Resilience on Container Terminal Throughput: A Continent-Wide Comparative Study. Journal of Marine Science and Engineering. 2025; 13(12):2225. https://doi.org/10.3390/jmse13122225
Chicago/Turabian StyleLee, Jeongmin, Wonhyeong Ryu, Yul-seong Kim, and Chang-hee Lee. 2025. "Analyzing the Impact of Climate Resilience on Container Terminal Throughput: A Continent-Wide Comparative Study" Journal of Marine Science and Engineering 13, no. 12: 2225. https://doi.org/10.3390/jmse13122225
APA StyleLee, J., Ryu, W., Kim, Y.-s., & Lee, C.-h. (2025). Analyzing the Impact of Climate Resilience on Container Terminal Throughput: A Continent-Wide Comparative Study. Journal of Marine Science and Engineering, 13(12), 2225. https://doi.org/10.3390/jmse13122225

