From Machinery to Biology: A Review on Mapless Autonomous Underwater Navigation
Abstract
1. Introduction
2. Conventional AUV Navigation
2.1. Dead Reckoning
2.1.1. Inertial Navigation Systems (INS)
2.1.2. Doppler Velocity Log (DVL)
2.1.3. Kalman Filtering (KF)
2.2. Simultaneous Localization and Mapping (SLAM)
2.2.1. Sensor Technologies for Underwater SLAM
2.2.2. Key Algorithms in Underwater SLAM
2.3. Path Planning
2.3.1. Classical Algorithmic Planners
2.3.2. Learning-Based Planners and Hybrid Architectures
2.4. Biomimetic and Bio-Inspired Navigation for Conventional AUVs
2.5. Summary
3. A Review of Aquatic Animal Navigation
3.1. The Sensory Systems
3.1.1. Visual System
3.1.2. Lateral Line System
3.1.3. Auditory System
3.1.4. Olfactory System
3.1.5. Magnetoreception and Electroreception
3.2. Navigational Strategies and Decision-Making
3.2.1. Long-Distance Navigation
3.2.2. Regional Navigation
3.2.3. Close-Range Navigation
3.3. Summary
4. Aquatic Animal Navigation Control via Brain-Computer Interface
4.1. Direct Motor Control
4.1.1. Peripheral Nerve/Muscle Direct Activation
4.1.2. Central Nervous System Control
4.2. Semi-Autonomous Control with Task-Level Commands
4.3. Autonomous Control by Biological Intelligence
5. Conclusions, Existing Challenges and Future Trends
Funding
Data Availability Statement
Conflicts of Interest
References
- Leonardo da Vinci’s Inventions. Self-Propelled Cart. Available online: https://www.da-vinci-inventions.com/self-propelled-cart (accessed on 17 September 2025).
- Moravec, H.P. The Stanford Cart and the CMU Rover. Proc. IEEE 1983, 71, 872–884. [Google Scholar] [CrossRef]
- Srinivas, P.; Gudla, R.; Telidevulapalli, V.; Kota, J.; Mandha, G. Review on Self-Driving Cars Using Neural Network Architectures. World J. Adv. Res. Rev. 2022, 16, 736–746. [Google Scholar] [CrossRef]
- Tsugawa, S. Vision-based vehicles in Japan: Machine vision systems and driving control systems. IEEE Trans. Ind. Electron. 1994, 41, 398–405. [Google Scholar] [CrossRef]
- Pomerleau, D.A. ALVINN: An autonomous land vehicle in a neural network. In Proceedings of the 2nd International Conference on Neural Information Processing Systems, Denver, CO, USA, 1 January 1988; MIT Press: Cambridge, MA, USA, 1988; pp. 305–313. [Google Scholar]
- Thorpe, C.; Hebert, M.; Kanade, T.; Shafer, S. Vision and Navigation for the Carnegie-Mellon Navlab. Annu. Rev. Comput. Sci. 1987, 2, 521–556. [Google Scholar] [CrossRef]
- Dickmanns, E.D.; Zapp, A. Autonomous High Speed Road Vehicle Guidance by Computer Vision. IFAC Proc. Vol. 1987, 20, 221–226. [Google Scholar] [CrossRef]
- Dickmanns, E.D. Dynamic Vision for Perception and Control of Motion; Springer: London, UK, 2007; ISBN 978-1-84628-637-7. [Google Scholar]
- Scales, H. The Deep Sea. In The Ocean and Us; Obaidullah, F., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 163–173. ISBN 978-3-031-10812-9. [Google Scholar]
- Wölfl, A.-C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.I.; Jakobsson, M.; Jencks, J.; Johnston, G.; et al. Seafloor Mapping—The Challenge of a Truly Global Ocean Bathymetry. Front. Mar. Sci. 2019, 6, 283. [Google Scholar] [CrossRef]
- The Rise of Ocean Robots. Nat. Geosci. 2020, 13, 393. [CrossRef]
- Wynn, R.B.; Huvenne, V.A.I.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their Past, Present and Future Contributions to the Advancement of Marine Geoscience. Mar. Geol. 2014, 352, 451–468. [Google Scholar] [CrossRef]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV Navigation and Localization: A Review. IEEE J. Ocean. Eng. 2014, 39, 131–149. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Sun, K.; Fan, D.; Cui, W. Recent Progress on Underwater Wireless Communication Methods and Applications. J. Mar. Sci. Eng. 2025, 13, 1505. [Google Scholar] [CrossRef]
- Li, Z.; Chitre, M.; Stojanovic, M. Underwater acoustic communications. Nat. Rev. Electr. Eng. 2025, 2, 83–95. [Google Scholar] [CrossRef]
- Huang, G. Visual-Inertial Navigation: A Concise Review. arXiv 2019, arXiv:1906.02650. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Webster-Wood, V.A.; Guix, M.; Xu, N.W.; Behkam, B.; Sato, H.; Sarkar, D.; Sanchez, S.; Shimizu, M.; Parker, K.K. Biohybrid robots: Recent progress, challenges, and perspectives. Bioinspir. Biomim. 2022, 18, 015001. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Yang, J.; Sawan, M.; Cui, W. Bridging Biology and Robotics: Advancing Submersible Technology from Robotic to Live-Fish Models. Acad. Eng. 2025, 2, 1–14. [Google Scholar] [CrossRef]
- Ko, H.; Lauder, G.; Nagpal, R. The Role of Hydrodynamics in Collective Motions of Fish Schools and Bioinspired Underwater Robots. J. R. Soc. Interface 2023, 20, 20230357. [Google Scholar] [CrossRef] [PubMed]
- Budiyono, A. Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems. Ind. Robot. Int. J. 2012, 39, 97–118. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, X.; Cheng, X.; Hao, Y. Research and Design of PINS Simulator Based on Underwater Vehicle Space Model. In Proceedings of the 2009 Second International Workshop on Knowledge Discovery and Data Mining, Moscow, Russia, 23–25 January 2009; pp. 917–920. [Google Scholar]
- Stutters, L.; Liu, H.; Tiltman, C.; Brown, D.J. Navigation Technologies for Autonomous Underwater Vehicles. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2008, 38, 581–589. [Google Scholar] [CrossRef]
- Tazartes, D. Inertial Navigation: From Gimbaled Platforms to Strapdown Sensors. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2292–2299. [Google Scholar] [CrossRef]
- Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology, 2nd ed.; The Institution of Engineering and Technology: Stevenage, UK, 2004. [Google Scholar]
- Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology—2nd Edition—[Book Review]. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 33–34. [Google Scholar] [CrossRef]
- Bao, J.; Li, D.; Qiao, X.; Rauschenbach, T. Integrated Navigation for Autonomous Underwater Vehicles in Aquaculture: A Review. Inf. Process. Agric. 2020, 7, 139–151. [Google Scholar] [CrossRef]
- Tian, Y.-P.; Yang, X.-J.; Guo, Y.-Z.; Liu, F. Filtering and analysis on the random drift of FOG. In AOPC 2015: Optical Fiber Sensors and Applications; Liao, Y., Zhang, W., Jiang, D., Wang, W., Brambilla, G., Eds.; SPIE: Beijing, China, 2015; p. 96790J. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Y.; Yue, J.; Mu, W.; Zhou, S.; Jin, D.; Xu, L. Integrated Navigation Algorithm for Autonomous Underwater Vehicle Based on Linear Kalman Filter, Thrust Model, and Propeller Tachometer. J. Mar. Sci. Eng. 2025, 13, 303. [Google Scholar] [CrossRef]
- Snyder, J. Doppler Velocity Log (DVL) Navigation for Observation-Class ROVs. In Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–9. [Google Scholar]
- McCue, L. Handbook of Marine Craft Hydrodynamics and Motion Control. IEEE Control. Syst. Mag. 2016, 36, 78–79. [Google Scholar] [CrossRef]
- Li, J.; Gu, M.; Zhu, T.; Wang, Z.; Zhang, Z.; Han, G. Research on Error Correction Technology in Underwater SINS/DVL Integrated Positioning and Navigation. Sensors 2023, 23, 4700. [Google Scholar] [CrossRef] [PubMed]
- Vickery, K. Acoustic positioning systems. A practical overview of current systems. In Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, Cambridge, MA, USA, 20–21 August 1998; pp. 5–17. [Google Scholar] [CrossRef]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-78480-7. [Google Scholar]
- Miller, P.; Farrell, J.; Zhao, Y.; Djapic, V. Autonomous Underwater Vehicle Navigation. IEEE J. Ocean. Eng. 2010, 35, 663–678. [Google Scholar] [CrossRef]
- Pan, X.; Wu, Y. Underwater Doppler Navigation with Self-Calibration. J. Navig. 2016, 69, 295–312. [Google Scholar] [CrossRef]
- Gilcoto, M.; Jones, E.; Fariña-Busto, L. Robust Estimations of Current Velocities with Four-Beam Broadband ADCPs. J. Atmos. Ocean. Technol. 2009, 26, 2777–2788. [Google Scholar] [CrossRef]
- Zhou, B.; Tong, H.; Zhang, B.; Xu, W. Development of Eight-Beam Phased Array Transducer. J. Vib. Shock. 2022, 41, 217–222. [Google Scholar]
- Liu, J.; Insana, M.F. Coded Pulse Excitation for Ultrasonic Strain Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 231–240. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Cao, Z.; Rui, C.; Cheng, M. Precision Evaluation in Velocity Estimation for Broadband Doppler Sonar. Measurement 2025, 256, 118140. [Google Scholar] [CrossRef]
- Lavery, A.C.; Bassett, C.; Lawson, G.L.; Jech, J.M. Exploiting Signal Processing Approaches for Broadband Echosounders. ICES J. Mar. Sci. 2017, 74, 2262–2275. [Google Scholar] [CrossRef]
- Burdyny, M.; Poroy, O.; Spain, P.; Lopez, G. Phased Array Velocity Sensor Operational Advantages and Data Analysis. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8. [Google Scholar]
- Martynyuk, A.P.; Kazakova, E.V. On the Acoustic Doppler Log Error with a Phased Array Antenna. Gyroscopy Navig. 2011, 2, 39–45. [Google Scholar] [CrossRef]
- Yang, H.; Gao, X.; Huang, H.; Li, B.; Jiang, J. A Tightly Integrated Navigation Method of SINS, DVL, and PS Based on RIMM in the Complex Underwater Environment. Sensors 2022, 22, 9479. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, W.; Lan, Y.; Liu, B.; Sun, Y.; Gao, S. Data-Driven Cooperative Localization Algorithm for Deep-Sea Landing Vehicles Under Track Slippage. Remote Sens. 2025, 17, 755. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, S.; Li, L.; Cao, C. Underwater DVL Optimization Network (UDON): A Learning-Based DVL Velocity Optimizing Method for Underwater Navigation. Drones 2025, 9, 56. [Google Scholar] [CrossRef]
- Klein, I.; Gutnik, Y.; Lipman, Y. Estimating DVL Velocity in Complete Beam Measurement Outage Scenarios. IEEE Sens. J. 2022, 22, 20730–20737. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Y.; Li, G.; Guang, X.; Li, S. An Improved Alignment Method for the Strapdown Inertial Navigation System (SINS). Sensors 2016, 16, 621. [Google Scholar] [CrossRef] [PubMed]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME–J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Schmidt, S.F. Application of State-Space Methods to Navigation Problems. In Advances in Control Systems; Leondes, C.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1966; Volume 3, pp. 293–340. [Google Scholar]
- Lv, P.-F.; Guo, J.; Lv, J.-Y.; He, B. Integrated Navigation Based on HG-RNN and EKF for Autonomous Underwater Vehicle. In Proceedings of the OCEANS 2024—Singapore, Singapore, 15–18 April 2024; pp. 1–5. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Signal Processing, Sensor Fusion, and Target Recognition VI; SPIE: Bellingham, WA, USA, 1997; Volume 3068. [Google Scholar] [CrossRef]
- Allotta, B.; Caiti, A.; Chisci, L.; Costanzi, R.; Di Corato, F.; Fantacci, C.; Fenucci, D.; Meli, E.; Ridolfi, A. An Unscented Kalman Filter Based Navigation Algorithm for Autonomous Underwater Vehicles. Mechatronics 2016, 39, 185–195. [Google Scholar] [CrossRef]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proc. F Radar Signal Process. 1993, 140, 107–113. [Google Scholar] [CrossRef]
- Menna, B.V.; Villar, S.A.; Acosta, G.G. Particle Filter Based Autonomous Underwater Vehicle Navigation System Aided Thru Acoustic Communication Ranging. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–10. [Google Scholar]
- Barrau, A.; Bonnabel, S. The Invariant Extended Kalman Filter as a Stable Observer. IEEE Trans. Autom. Control. 2017, 62, 1797–1812. [Google Scholar] [CrossRef]
- Liu, C.; Wang, G.; Guan, X.; Huang, C. Robust m-Estimation-Based Maximum Correntropy Kalman Filter. ISA Trans. 2023, 136, 198–209. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-70858-2. [Google Scholar]
- Rocha, K.D.T.; Terra, M.H. Robust Kalman Filter for Systems Subject to Parametric Uncertainties. Syst. Control. Lett. 2021, 157, 105034. [Google Scholar] [CrossRef]
- Webster, S.E.; Eustice, R.M.; Singh, H.; Whitcomb, L.L. Advances in Single-Beacon One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles. Int. J. Robot. Res. 2012, 31, 935–950. [Google Scholar] [CrossRef]
- Bailey, T.; Durrant-Whyte, H. Simultaneous Localization and Mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound; McGraw-Hill: New York, NY, USA, 1983; ISBN 9780070660878. [Google Scholar]
- Guth, F.; Silveira, L.; Botelho, S.; Drews-Jr, P.; Ballester, P. Underwater SLAM: Challenges, State of the Art, Algorithms and a New Biologically-Inspired Approach. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 981–986. [Google Scholar]
- Hammerstad, E.; Asheim, S.; Nilsen, K.; Bodholt, H. Advances in multibeam echo sounder technology. In Proceedings of the OCEANS ‘93, Victoria, BC, Canada, 18–21 October 1993; Volume 1, pp. I482–I487. [Google Scholar] [CrossRef]
- Pinto, M.A.; Lyonnet, B.; Simian, T.; Meltzheim, S. A New High Resolution AUV-Based Synthetic Aperture Sonar for Challenging Environmental Conditions. In Proceedings of the OCEANS 2023—MTS/IEEE U.S. Gulf Coast, Biloxi, MS, USA, 25–28 September 2023; pp. 1–5. [Google Scholar]
- Fernandez, J.E.; Matthews, A.D.; Cook, D.A.; Stroud, J.S. Synthetic Aperture Sonar Development for Autonomous Underwater Vehicles. In Proceedings of the Oceans ‘04 MTS/IEEE Techno-Ocean ‘04, Kobe, Japan, 9–12 November 2004; Volume 4, pp. 1927–1933. [Google Scholar]
- Wang, L.; Bellettini, A.; Hollett, R.; Tesei, A.; Pinto, M.; Chapman, S.; Gade, K. InSAS’00: Interferometric SAS and INS aided SAS imaging. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001; Volume 1, pp. 179–187. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, S.; He, X.; Huang, H.; Hao, K. Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles. Sensors 2020, 20, 102. [Google Scholar] [CrossRef]
- Vargas, E.; Scona, R.; Willners, J.S.; Luczynski, T.; Cao, Y.; Wang, S.; Petillot, Y.R. Robust Underwater Visual SLAM Fusing Acoustic Sensing. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 2140–2146. [Google Scholar]
- Zhang, S.; Zhao, S.; An, D.; Liu, J.; Wang, H.; Feng, Y.; Li, D.; Zhao, R. Visual SLAM for Underwater Vehicles: A Survey. Comput. Sci. Rev. 2022, 46, 100510. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y.; Lu, J.; Jiang, Q.; Xie, O.; Yang, Y.; Zhu, Q. DyStSLAM: An efficient stereo vision SLAM system in dynamic environment. Meas. Sci. Technol. 2022, 34, 025105. [Google Scholar] [CrossRef]
- Jia, Z.; Ma, Y.; Lai, J.; Wang, Z. DOA-SLAM: An Efficient Stereo Visual SLAM System in Dynamic Environment. Int. J. Control. Autom. Syst. 2025, 23, 1181–1198. [Google Scholar] [CrossRef]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef]
- Grimaldi, M.; Nakath, D.; She, M.; Köser, K. Investigation of the Challenges of Underwater-Visual-Monocular-SLAM. arXiv 2023, arXiv:2306.08738. [Google Scholar] [CrossRef]
- Kohlbrecher, S.; von Stryk, O.; Meyer, J.; Klingauf, U. A Flexible and Scalable SLAM System with Full 3D Motion Estimation. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 155–160. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef]
- Palomer, A.; Ridao, P.; Youakim, D.; Ribas, D.; Forest, J.; Petillot, Y. 3D Laser Scanner for Underwater Manipulation. Sensors 2018, 18, 1086. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Gutmann, J.-S.; Konolige, K. Incremental Mapping of Large Cyclic Environments. In Proceedings of the Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA’99 (Cat. no.99EX375), Monterey, CA, USA, 8–9 November 1999; pp. 318–325. [Google Scholar]
- Lu, F.; Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping. Auton. Robot. 1997, 4, 333–349. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Dellaert, F.; Kaess, M. Factor Graphs for Robot Perception. Found. Trends Robot. 2017, 6, 1–139. [Google Scholar] [CrossRef]
- Kaess, M.; Ranganathan, A.; Dellaert, F. iSAM: Incremental Smoothing and Mapping. IEEE Trans. Robot. 2008, 24, 1365–1378. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Heshmat, M.; Saad Saoud, L.; Abujabal, M.; Sultan, A.; Elmezain, M.; Seneviratne, L.; Hussain, I. Underwater SLAM Meets Deep Learning: Challenges, Multi-Sensor Integration, and Future Directions. Sensors 2025, 25, 3258. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-d Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Machado, M.; Zaffari, G.; Ribeiro, P.O.; Drews-Jr, P.; Botelho, S. Description and Matching of Acoustic Images Using a Forward Looking Sonar: A Topological Approach. IFAC-PapersOnLine 2017, 50, 2317–2322. [Google Scholar] [CrossRef]
- Latombe, J.-C. Robot Motion Planning, 1st ed.; Springer: New York, NY, USA, 1991; ISBN 978-1-4615-4022-9. [Google Scholar]
- Cheng, C.; Sha, Q.; He, B.; Li, G. Path Planning and Obstacle Avoidance for AUV: A Review. Ocean. Eng. 2021, 235, 109355. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Autonomous Robot Vehicles; Cox, I.J., Wilfong, G.T., Eds.; Springer: New York, NY, USA, 1990; pp. 396–404. ISBN 978-1-4613-8997-2. [Google Scholar]
- Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, Y.; Gong, C.; Zhou, Y.; Zeng, C.; Zhu, S. Improved Dynamic Window Approach for Unmanned Surface Vehicles’ Local Path Planning Considering the Impact of Environmental Factors. Sensors 2022, 22, 5181. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, H.; Nian, M.; Ouyang, H.; Xu, S. AUV Local Path Planning Based on an Improved DWA Algorithm in Complex Dynamic Environments. In Proceedings of the 2025 IEEE 6th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Shenzhen, China, 11–13 April 2025; pp. 1–8. [Google Scholar]
- Fiorini, P. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Koren, Y.; Borenstein, J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In Proceedings of the Proceedings 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 7–12 April 1991; Volume 2, pp. 1398–1404. [Google Scholar]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M.; Furcy, D. Lifelong Planning a*. Artif. Intell. 2004, 155, 93–146. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M. Fast Replanning for Navigation in Unknown Terrain. IEEE Trans. Robot. 2005, 21, 354–363. [Google Scholar] [CrossRef]
- LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report TR 98-11; Department of Computer Science, Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Zhang, L.; Lin, Z.; Wang, J.; He, B. Rapidly-Exploring Random Trees Multi-Robot Map Exploration Under Optimization Framework. Robot. Auton. Syst. 2020, 131, 103565. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-Connect: An Efficient Approach to Single-Query Path Planning. In Proceedings of the Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. no.00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [Google Scholar]
- Chen, Y.; Wang, L. Adaptively Dynamic RRT*-Connect: Path Planning for UAVs Against Dynamic Obstacles. In Proceedings of the 2022 7th International Conference on Automation, Control and Robotics Engineering (CACRE), Xi’an, China, 14–16 July 2022; pp. 1–7. [Google Scholar]
- Arslan, O.; Berntorp, K.; Tsiotras, P. Sampling-Based Algorithms for Optimal Motion Planning Using Closed-Loop Prediction. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4991–4996. [Google Scholar]
- Xie, C.; Wang, Y.; Liu, Y.; Li, Z.; Zhu, J.; Qin, J. An AUV Path Planning Method Based on Improved APF-RRT*. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Heilongjiang, China, 6–9 August 2023; pp. 1190–1195. [Google Scholar]
- Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling-Based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004. [Google Scholar]
- Wang, Y.; Li, J.; Yang, Y.; Liu, C.; Tang, Q. An Improved Informed RRT*-Connect Algorithm for UAVs Path Planning. In Proceedings of the 2024 IEEE International Conference on Unmanned Systems (ICUS), Nanjing, China, 18–20 October 2024; pp. 325–333. [Google Scholar]
- Webb, D.J.; Berg, J. van den Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots with Linear Dynamics. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5054–5061. [Google Scholar]
- Taheri, E.; Ferdowsi, M.H.; Danesh, M. Closed-Loop Randomized Kinodynamic Path Planning for an Autonomous Underwater Vehicle. Appl. Ocean. Res. 2019, 83, 48–64. [Google Scholar] [CrossRef]
- Gurve, V.; Mahajan, S.; Wagle, S.A. Robot motion planning: Methods, challenges, and future directions. Int. J. Intell. Robot. Appl. 2025, 9, 1–12. [Google Scholar] [CrossRef]
- Dong, L.; He, Z.; Song, C.; Sun, C. A Review of Mobile Robot Motion Planning Methods: From Classical Motion Planning Workflows to Reinforcement Learning-Based Architectures. J. Syst. Eng. Electron. 2023, 34, 439–459. [Google Scholar] [CrossRef]
- Ma, D.; Chen, X.; Ma, W.; Zheng, H.; Qu, F. Neural Network Model-Based Reinforcement Learning Control for AUV 3D Path Following. IEEE Trans. Intell. Veh. 2024, 9, 893–904. [Google Scholar] [CrossRef]
- Wen, J.; Dai, H.; He, J.; Sun, L.; Gao, L. Intelligent Decision-Making Method for AUV Path Planning Against Ocean Current Disturbance via Reinforcement Learning. IEEE Internet Things J. 2024, 11, 38965–38975. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, C.; Meng, Y.; Ren, X.; Wang, X. Reinforcement Learning-Based Moving-Target Enclosing Control for an Unmanned Surface Vehicle in Multi-Obstacle Environments. Ocean. Eng. 2024, 304, 117920. [Google Scholar] [CrossRef]
- Li, G.; Wong, T.W.; Shih, B.; Guo, C.; Wang, L.; Liu, J.; Wang, T.; Liu, X.; Yan, J.; Wu, B.; et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 2023, 14, 7097. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, Q.; Li, R.; Yang, J.; Liu, Q.; Zhu, B.; Weng, C.; Liu, W.; Hu, P.; Ma, L.; et al. A Comprehensive Review on the Evolution of Bio-Inspired Sensors from Aquatic Creatures. Cell Rep. Phys. Sci. 2024, 5, 102064. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Yu, S.M.; Yu, H.; Zhu, J.; Chu, J. Bioinspired Underwater Navigation Using Polarization Patterns Within Snell’s Window. China Ocean. Eng. 2023, 37, 628–636. [Google Scholar] [CrossRef]
- Qiao, Q.; Kong, X.; Wu, S.; Liu, G.; Zhang, G.; Yang, H.; Zhang, W.; Yang, Y.; Jia, L.; He, C.; et al. A Bio-Inspired MEMS Wake Detector for AUV Tracking and Coordinated Formation. Remote Sens. 2023, 15, 2949. [Google Scholar] [CrossRef]
- Shu, S.; Wang, T.; He, J.; Chen, P.; Xu, S.; Li, C.; Xu, M.; Tang, W. Bionic Underwater Multimodal Sensor Inspired by Fish Lateralis Neuromasts. Device 2023, 1, 100175. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Liu, X.; Wang, X.; Zheng, J.; Wang, S.; Chen, T.; Wang, H.; Wang, C.; Fu, X.; et al. A Bio-Inspired and Self-Powered Triboelectric Tactile Sensor for Underwater Vehicle Perception. npj Flex. Electron. 2022, 6, 25. [Google Scholar] [CrossRef]
- Jiu, H.; Deng, W. A planning method for chemical plume tracking and source localization with autonomous underwater vehicle. Int. J. Adv. Robot. Syst. 2024, 21, 17298806241233909. [Google Scholar] [CrossRef]
- Sahoo, S.P.; Das, B.; Pati, B.B.; Garcia Marquez, F.P.; Segovia Ramirez, I. Hybrid Path Planning Using a Bionic-Inspired Optimization Algorithm for Autonomous Underwater Vehicles. J. Mar. Sci. Eng. 2023, 11, 761. [Google Scholar] [CrossRef]
- Zhi-Wen, W.; Kun, L.M.; Li-jing, W. Path Planning for UUV in Dynamic Environment. In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; Volume 1, pp. 211–215. [Google Scholar]
- Zhang, Y.; Gong, D.; Zhang, J. Robot Path Planning in Uncertain Environment Using Multi-Objective Particle Swarm Optimization. Neurocomputing 2013, 103, 172–185. [Google Scholar] [CrossRef]
- Triantafyllou, M.; Triantafyllou, G. An Efficient Swimming Machine. Sci. Am. 1995, 272, 64–70. [Google Scholar] [CrossRef]
- Cui, W.; Pan, L.; Li, R. A Suggestion of Using Task Efficiency to Replace Swimming Efficiency for Both Robotic Fish and Living Fish. Ships Offshore Struct. 2024, 19, 2204–2212. [Google Scholar] [CrossRef]
- Goodyear, C.P.; Ferguson, D.E. Sun-Compass Orientation in the Mosquitofish, Gambusia affinis. Anim. Behav. 1969, 17, 636–640. [Google Scholar] [CrossRef]
- Winn, H.; Salmon, M.; Roberts, N. Sun-Compass Orientation by Parrot Fishes. Ethology 2010, 21, 798–812. [Google Scholar] [CrossRef]
- Faillettaz, R.; Blandin, A.; Koubbi, P.; Irisson, J.-O. Sun-Compass Orientation in Mediterranean Fish Larvae. PLoS ONE 2015, 10, e0135213. [Google Scholar] [CrossRef]
- Foster, J.; Temple, S.; How, M.; Daly, I.; Sharkey, C.; Wilby, D.; Roberts, N. Polarization Vision—Overcoming Challenges of Working with a Property of Light We Barely See. Sci. Nat. 2018, 105, 27. [Google Scholar] [CrossRef]
- Berenshtein, I.; Kiflawi, M.; Shashar, N.; Wieler, U.; Agiv, H. Polarized Light Sensitivity and Orientation in Coral Reef Fish Post-Larvae. PLoS ONE 2014, 9, e88468. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Ferrari, A.; Vallortigara, G.; Sovrano, V.A. Boundary Primacy in Spatial Mapping: Evidence from Zebrafish (Danio rerio). Behav. Process. 2015, 119, 116–122. [Google Scholar] [CrossRef]
- Kasumyan, A. The Lateral Line in Fish: Structure, Function, and Role in Behavior. J. Ichthyol. 2003, 43, S175–S213. [Google Scholar]
- Bleckmann, H. The Lateral Line System of Fish. In Sensory Systems Neuroscience; Academic Press: Oxford, UK, 2006; Volume 25, pp. 411–453. [Google Scholar]
- Jiang, Y.; Ma, Z.; Zhang, D. Flow Field Perception Based on the Fish Lateral Line System. Bioinspiration Biomim. 2019, 14, 041001. [Google Scholar] [CrossRef] [PubMed]
- Coombs, S.; Bleckmann, H.; Fay, R.R.; Popper, A.N. (Eds.) The Lateral Line System; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8851-4. [Google Scholar]
- Montgomery, J.; Baker, C.; Carton, A. The Lateral Line Can Mediate Rheotaxis in Fish. Nature 1997, 389, 960–963. [Google Scholar] [CrossRef]
- Lloyd, E.; Olive, C.; Stahl, B.A.; Jaggard, J.B.; Amaral, P.; Duboué, E.R.; Keene, A.C. Evolutionary Shift Towards Lateral Line Dependent Prey Capture Behavior in the Blind Mexican Cavefish. Dev. Biol. 2018, 441, 328–337. [Google Scholar] [CrossRef]
- Rodríguez-Morales, R. Sensing in the Dark: Constructive Evolution of the Lateral Line System in Blind Populations of Astyanax mexicanus. Ecol. Evol. 2024, 14, e11286. [Google Scholar] [CrossRef]
- Veith, J.; Chaigne, T.; Svanidze, A.; Dressler, L.E.; Hoffmann, M.; Gerhardt, B.; Judkewitz, B. The Mechanism for Directional Hearing in Fish. Nature 2024, 631, 118–124. [Google Scholar] [CrossRef]
- Ladich, F.; Schulz-Mirbach, T. Diversity in Fish Auditory Systems: One of the Riddles of Sensory Biology. Front. Ecol. Evol. 2016, 4, 28. [Google Scholar] [CrossRef]
- Deng, X.; Wagner, H.J.; Popper, A.N. The Inner Ear and Its Coupling to the Swim Bladder in the Deep-Sea Fish Antimora rostrata (Teleostei: Moridae). Deep. Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Vickers, N. Mechanisms of Animal Navigation in Odor Plumes. Biol. Bull. 2000, 198, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Dittman, A.H.; Quinn, T.P. Homing in Pacific Salmon: Mechanisms and Ecological Basis. J. Exp. Biol. 1996, 199, 83–91. [Google Scholar] [CrossRef]
- Hasler, A.D.; Scholz, A.T. Olfactory Imprinting and Homing in Salmon: Investigations into the Mechanism of the Imprinting Process; Springer: Berlin/Heidelberg, Germany, 1983; ISBN 978-3-642-82070-0. [Google Scholar]
- Lohmann, K.; Lohmann, C.; Putman, N. Magnetic Maps in Animals: Nature’s GPS. J. Exp. Biol. 2007, 210, 3697–3705. [Google Scholar] [CrossRef]
- Lohmann, K.; Goforth, K.; Mackiewicz, A.; Lim, D.; Lohmann, C. Magnetic Maps in Animal Navigation. J. Comp. Physiol. A 2022, 208, 41–67. [Google Scholar] [CrossRef]
- Putman, N.F.; Scanlan, M.M.; Billman, E.J.; O’Neil, J.P.; Couture, R.B.; Quinn, T.P.; Lohmann, K.J.; Noakes, D.L. An Inherited Magnetic Map Guides Ocean Navigation in Juvenile Pacific Salmon. Curr. Biol. 2014, 24, 446–450. [Google Scholar] [CrossRef]
- Bullock, T.H. Electroreception. Annu. Rev. Neurosci. 1982, 5, 121–170. [Google Scholar] [CrossRef]
- Kalmijn, A.J. The Electric Sense of Sharks and Rays. J. Exp. Biol. 1971, 55, 371–383. [Google Scholar] [CrossRef]
- Emde, G. von der Active Electrolocation of Objects in Weakly Electric Fish. J. Exp. Biol. 1999, 202, 1205–1215. [Google Scholar] [CrossRef]
- Bullock, T.H.; Hopkins, C.D.; Popper, A.N.; Fay, R.R. (Eds.) Electroreception, 1st ed.; Springer: New York, NY, USA, 2005; ISBN 978-0-387-23192-1. [Google Scholar]
- Catania, K. The Shocking Predatory Strike of the Electric Eel. Science 2014, 346, 1231–1234. [Google Scholar] [CrossRef]
- Ueda, H. Physiological Mechanism of Homing Migration in Pacific Salmon from Behavioral to Molecular Biological Approaches. Gen. Comp. Endocrinol. 2011, 170, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Klimley, A.P. Highly Directional Swimming by Scalloped Hammerhead Sharks, Sphyrna lewini, and Subsurface Irradiance, Temperature, Bathymetry, and Geomagnetic Field. Mar. Biol. 1993, 117, 1–22. [Google Scholar] [CrossRef]
- Simpson, S.; Meekan, M.; Montgomery, J.; McCauley, R.; Jeffs, A. Homeward Sound. Science 2005, 308, 221. [Google Scholar] [CrossRef]
- Walton, A.G.; Moller, P. Maze Learning and Recall in a Weakly Electric Fish, Mormyrus rume proboscirostris Boulenger (Mormyridae, Teleostei). Ethology 2010, 116, 904–919. [Google Scholar] [CrossRef]
- Aronson, L.R. Further Studies on Orientation and Jumping Behavior in the Gobiid Fish, Bathygobius soporator. Ann. N. Y. Acad. Sci. 1971, 188, 378–392. [Google Scholar] [CrossRef]
- Teyke, T. Learning and Remembering the Environment in the Blind Cave Fish Anoptichthys jordani. J. Comp. Physiol. A 1989, 164, 655–662. [Google Scholar] [CrossRef]
- Sato, H.; Berry, C.W.; Casey, B.E.; Lavella, G.; Yao, Y.; VandenBrooks, J.M.; Maharbiz, M.M. A Cyborg Beetle: Insect Flight Control Through an Implantable, Tetherless Microsystem. In Proceedings of the 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, 13–17 January 2008; pp. 164–167. [Google Scholar]
- Fitzgerald, L.; Le, H.N.; Wilson, R.S.; Nguyen, H.D.; Do, T.N.; Vo-Doan, T.T. Zoborg: On-Demand Climbing Control for Cyborg Beetles. Adv. Sci. 2025, 12, e02095. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Y.; Yang, S.; Liu, S.; Tang, L.; Li, B.; Li, Y. The Autonomous Pipeline Navigation of a Cockroach Bio-Robot with Enhanced Walking Stimuli. Cyborg Bionic Syst. 2023, 4, 0067. [Google Scholar] [CrossRef]
- Ariyanto, M.; Refat, C.M.M.; Yamamoto, K.; Morishima, K. Feedback Control of Automatic Navigation for Cyborg Cockroach Without External Motion Capture System. Heliyon 2024, 10, e26987. [Google Scholar] [CrossRef]
- Sato, H.; Berry, C.W.; Peeri, Y.; Baghoomian, E.; Casey, B.E.; Lavella, G.; VandenBrooks, J.M.; Harrison, J.F.; Maharbiz, M.M. Remote Radio Control of Insect Flight. Front. Integr. Neurosci. 2009, 3, 24. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, C.; Vo Doan, T.T.; Li, Y.; Sangi, D.H.; Koh, J.S.; Huynh, N.A.; Bin Aziz, M.F.; Choo, H.Y.; Ikeda, K.; et al. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles. PLoS ONE 2014, 9, e105389. [Google Scholar] [CrossRef] [PubMed]
- Tsang, W.M.; Stone, A.L.; Otten, D.; Aldworth, Z.N.; Daniel, T.L.; Hildebrand, J.G.; Levine, R.B.; Voldman, J. Insect-machine interface: A carbon nanotube-enhanced flexible neural probe. J. Neurosci. Methods 2012, 204, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Mei, H.; Li, R.; Wang, C.; Fang, K.; Wang, W.; Tang, Y.; Dai, Z. Progresses of Animal Robots: A Historical Review and Perspectiveness. Heliyon 2022, 8, e11499. [Google Scholar] [CrossRef] [PubMed]
- Shik, M.; Severin, F.; Orlovsky, G. Control of Walking and Running by Means of Electrical Stimulation of the Mesencephalon. Electroencephalogr. Clin. Neurophysiol. 1969, 26, 549. [Google Scholar]
- Grillner, S. Some Aspects on the Descending Control of the Spinal Circuits Generating Locomotor Movements. In Neural control of Locomotion; Herman, R.M., Grillner, S., Stein, P.S.G., Stuart, D.G., Eds.; Springer US: Boston, MA, USA, 1976; pp. 351–375. ISBN 978-1-4757-0964-3. [Google Scholar]
- Talwar, S.K.; Xu, S.; Hawley, E.S.; Weiss, S.A.; Moxon, K.A.; Chapin, J.K. Rat Navigation Guided by Remote Control. Nature 2002, 417, 37–38. [Google Scholar] [CrossRef]
- Xu, S.; Talwar, S.K.; Hawley, E.S.; Li, L.; Chapin, J.K. A Multi-Channel Telemetry System for Brain Microstimulation in Freely Roaming Animals. J. Neurosci. Methods 2004, 133, 57–63. [Google Scholar] [CrossRef]
- Graziano, M.S.A.; Taylor, C.S.R.; Moore, T. Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron 2002, 34, 841–851. [Google Scholar] [CrossRef]
- Ekeberg, Ö.; Grillner, S. Simulations of Neuromuscular Control in Lamprey Swimming. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 895–902. [Google Scholar] [CrossRef]
- Sirota, M.G.; Di Prisco, G.V.; Dubuc, R. Stimulation of the Mesencephalic Locomotor Region Elicits Controlled Swimming in Semi-Intact Lampreys. Eur. J. Neurosci. 2000, 12, 4081–4092. [Google Scholar] [CrossRef]
- Arrenberg, A.B.; Bene, F.D.; Baier, H. Optical Control of Zebrafish Behavior with Halorhodopsin. Proc. Natl. Acad. Sci. USA 2009, 106, 17968–17973. [Google Scholar] [CrossRef]
- Kobayashi, N.; Yoshida, M.; Matsumoto, N.; Uematsu, K. Artificial Control of Swimming in Goldfish by Brain Stimulation: Confirmation of the Midbrain Nuclei as the Swimming Center. Neurosci. Lett. 2009, 452, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Vinepinsky, E.; Cohen, L.; Perchik, S.; Las, L.; Netser, S. Representation of Edges, Head Direction, and Swimming Kinematics in the Brain of Freely-Navigating Fish. Sci. Rep. 2020, 10, 14762. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, L.; Trimmer, B.; Feinberg, A.; Raman, R.; Parker, K.; Sitti, M.; Martel, S.; Dario, P.; Menciassi, A. Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells. Sci. Robot. 2017, 2, eaaq0495. [Google Scholar] [CrossRef]
- Kajiura, S.M.; Fitzgerald, T.P. Response of Juvenile Scalloped Hammerhead Sharks to Electric Stimuli. Zoology 2009, 112, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, C.-H.; Kim, D.-G.; Kim, H.-G.; Lee, P.-S.; Myung, H. Remote Guidance of Untrained Turtles by Controlling Voluntary Instinct Behavior. PLoS ONE 2013, 8, e0061798. [Google Scholar] [CrossRef]
- Kim, C.-H.; Choi, B.; Kim, D.-G.; Lee, S.; Jo, S.; Lee, P.-S. Remote Navigation of Turtle by Controlling Instinct Behavior via Human Brain-Computer Interface. J. Bionic Eng. 2016, 13, 491–503. [Google Scholar] [CrossRef]
- Kim, D.-G.; Lee, S.; Kim, C.-H.; Jo, S.; Lee, P.-S. Parasitic Robot System for Waypoint Navigation of Turtle. J. Bionic Eng. 2017, 14, 327–335. [Google Scholar] [CrossRef]
- Romano, D.; Donati, E.; Benelli, G.; Stefanini, C. A review on animal–robot interaction: From bio-hybrid organisms to mixed societies. Biol. Cybern. 2019, 113, 201–225. [Google Scholar] [CrossRef]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique. Med. J. Aust. 1960, 1, 500–502. [Google Scholar]
- Ashwood, Z.; Jha, A.; Pillow, J.W. Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2022; Volume 35, pp. 29663–29676. [Google Scholar]
- Xu, X.; Scott-Scheiern, T.; Kempker, L.; Simons, K. Active Avoidance Conditioning in Zebrafish (Danio rerio). Neurobiol. Learn. Mem. 2007, 87, 72–77. [Google Scholar] [CrossRef]
- Furton, K.; Myers, L. The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives. Talanta 2001, 54, 487–500. [Google Scholar] [CrossRef]
- Moore, P.W. Mine-Hunting Dolphins of the Navy. In Proceedings of the Detection and Remediation Technologies for Mines and Mine-like Targets II; SPIE: Bellingham, WA, USA, 1997; Volume 3079, pp. 2–6. [Google Scholar]
- Poling, A.; Weetjens, B.J.; Cox, C.; Beyene, N.; Bach, H.; Sully, A. Teaching Giant African Pouched Rats to Find Landmines: Operant Conditioning with Real Consequences. Behav. Anal. Pract. 2010, 3, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.K.; Saccardo, C.C.; Poling, A.; Cox, C.; Fast, C.D. Rapidly Training African Giant Pouched Rats (Cricetomys ansorgei) with Multiple Targets for Scent Detection. Behav. Process. 2020, 174, 104085. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, D.; Brennan, C.H. Chapter 7—Classical and Operant Conditioning in Larval Zebrafish. In Behavioral and Neural Genetics of Zebrafish; Gerlai, R.T., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 107–122. ISBN 978-0-12-817528-6. [Google Scholar]
- Barreiros, M.d.O.; Barbosa, F.G.; Dantas, D.d.O.; Santos, D.d.M.L.d.; Ribeiro, S.; Santos, G.C.d.O.; Barros, A.K. Zebrafish Automatic Monitoring System for Conditioning and Behavioral Analysis. Sci. Rep. 2021, 11, 9330. [Google Scholar] [CrossRef] [PubMed]
- Braubach, O.R.; Wood, H.-D.; Gadbois, S.; Fine, A.; Croll, R.P. Olfactory Conditioning in the Zebrafish (Danio rerio). Behav. Brain Res. 2009, 198, 190–198. [Google Scholar] [CrossRef]
- Zippel, H.P.; Voigt, R.; Knaust, M.; Luan, H.L.E. Spontaneous Behavior, Training and Discrimination Training in Goldfish Using Chemosensory Stimuli. J. Comp. Physiol. A 1993, 172, 81–90. [Google Scholar] [CrossRef]
- Givon, S.; Samina, M.; Ben-Shahar, O.; Segev, R. From Fish Out of Water to New Insights on Navigation Mechanisms in Animals. Behav. Brain Res. 2022, 419, 113711. [Google Scholar] [CrossRef]



| Feature | Underwater | Terrestrial 1 |
|---|---|---|
| Positioning Method | acoustics, inertial, SLAM | GPS |
| Perception Modality | Sonar, optical (Short-Range) | optical and electromagnetic waves |
| Environmental Dynamics | unstructured and highly dynamic | structured and relatively static |
| Prior Knowledge | often lacks a global priori map, operates with local or no maps | High-Definition Maps |
| Filter Variant | Core Principle | Primary Application/Features in AUV Navigation |
|---|---|---|
| Extended KF | Approximates non-linear models via first-order Taylor series linearization [50]. | Most common non-linear filter, widely used in standard INS/DVL/Depth/Compass sensor fusion [51]. |
| Unscented KF | Approximates probability distributions using a deterministic set of “sigma points” [52]. | Provides higher accuracy than EKF for highly non-linear AUV dynamics. Frequently applied in Terrain-Referenced Navigation [53]. |
| Particle Filter | Represents probability distributions using a set of weighted random samples [54]. | Handles arbitrary non-linearities and non-Gaussian noise. Often used for global localization or complex SLAM in AUVs [55]. |
| Invariant EKF | An EKF variant that respects the geometric symmetries of the state space [56]. | Provides better consistency for orientation estimation in AUV navigation [56]. |
| Robust KF | Designed to be insensitive to measurement outliers and non-Gaussian noise [57,58,59]. | Employs statistical tests or alternative noise models to prevent filter degradation. Used to reject spurious acoustic measurements from DVL due to water column interference [60]. |
| Algorithm Variant | Core Principle | Primary Application/Features in AUV Navigation |
|---|---|---|
| RRT-Connect | Grows two trees, one from the start and one from the goal, and attempts to connect them through simple greedy heuristic [103]. | Often used for rapid initial pathfinding in complex 3D underwater environments due to its rapidity [104]. |
| RRT* | Adds a neighborhood search and tree rewiring process to the RRT framework to incrementally improve path quality [105]. | Guarantees eventual convergence to the optimal path. Applied in AUVs where path quality is critical [106]. |
| Informed RRT* | After finding an initial solution, it focuses all subsequent sampling within an ellipsoidal subset that contains all potential path improvements [107]. | Significantly accelerates convergence speed, particularly used for replanning in semi-static environments [108]. |
| Kinodynamic RRT* | Extends RRT* to handle systems with differential constraints by planning in the full state space [109]. | Essential for generating dynamically feasible trajectories that respect the AUV’s complex hydrodynamics (e.g., minimum turning radius, thruster limits) [110]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Cui, W. From Machinery to Biology: A Review on Mapless Autonomous Underwater Navigation. J. Mar. Sci. Eng. 2025, 13, 2202. https://doi.org/10.3390/jmse13112202
Zhu W, Cui W. From Machinery to Biology: A Review on Mapless Autonomous Underwater Navigation. Journal of Marine Science and Engineering. 2025; 13(11):2202. https://doi.org/10.3390/jmse13112202
Chicago/Turabian StyleZhu, Wenxi, and Weicheng Cui. 2025. "From Machinery to Biology: A Review on Mapless Autonomous Underwater Navigation" Journal of Marine Science and Engineering 13, no. 11: 2202. https://doi.org/10.3390/jmse13112202
APA StyleZhu, W., & Cui, W. (2025). From Machinery to Biology: A Review on Mapless Autonomous Underwater Navigation. Journal of Marine Science and Engineering, 13(11), 2202. https://doi.org/10.3390/jmse13112202

