Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis
Abstract
1. Introduction
2. Adopted Datasets and Research Methodology
2.1. Adopted Datasets
2.1.1. GMSL Data
2.1.2. ONI Data
2.2. Methodology
3. Results and Analysis
3.1. LMD Results
3.2. Denoising the High-Frequency Component Using the Improved Wavelet Threshold Method
3.2.1. Results of Improved Wavelet Threshold Method
3.2.2. Comparison of Denoising Results
3.3. Wavelet-Based Analysis of GMSL-ONI Relationships
3.3.1. ONI-Based ENSO Event Categorization
3.3.2. CWT and Periodicity Analysis of GMSL and ONI
3.3.3. Cross-Wavelet Coherence Analysis of GMSL and ONI
3.3.4. Correlation Analysis of GMSL and ONI
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, S.; Heki, K.; Qian, A. Acceleration in the global mean sea level rise: 2005–2015. Geophys. Res. Lett. 2017, 44, 11905–11913. [Google Scholar] [CrossRef]
- Cazenave, A.; Meyssignac, B.; Ablain, M.; Balmaseda, M.; Bamber, J.; Barletta, V.R.; Beckley, B.D.; Benvéniste, J.; Berthier, E.; Blazquez, A.; et al. Global sea-level budget 1993-present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar]
- Zhang, R.-H.; Gao, C.; Kang, X.; Zhi, H.; Wang, Z.; Feng, L. ENSO modulations due to interannual variability of freshwater forcing and ocean biology-induced heating in the tropical Pacific. Sci. Rep. 2015, 5, 18506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, S.; Qin, S.; Li, B.; Ding, L. Harmonic Measurement Method and System Design Based on Self-compensating FFT. IEEE Sens. J. 2025, 25, 24588–24597. [Google Scholar] [CrossRef]
- Tian, J.; Xu, J.; Wei, E. The wavelet analysis of satellite sea surface temperature in the South China Sea and the Pacific Ocean. Chin. Sci. Bull. 2000, 45, 2187–2192. [Google Scholar] [CrossRef]
- Jiang, W.; You, W. A combined denoising method of empirical mode decomposition and singular spectrum analysis applied to Jason altimeter waveforms: A case of the Caspian Sea. Geod. Geodyn. 2022, 13, 327–342. [Google Scholar] [CrossRef]
- Chen, H.; Lu, T.; Huang, J.; He, X.; Sun, X. An improved VMD–EEMD–LSTM time series hybrid prediction model for sea surface height derived from satellite altimetry data. J. Mar. Sci. Eng. 2023, 11, 2386. [Google Scholar] [CrossRef]
- Ozkan, G.; Mengi, Y. On the use of FFT algorithm for the circumferential co-ordinate in boundary element formulation of axisymmetric problems. Int. J. Numer. Methods Eng. 1997, 40, 2385–2412. [Google Scholar] [CrossRef]
- Pei, W.; Liu, J.; Chen, Y.; Fu, G.; Ma, C.; Liu, Y. Quantifying Impacts of Human Activities and Climate Change on Runoff Variation: A Case Study of Songhua River Basin, China. Chin. Geogr. Sci. 2025, 35, 1153–1169. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Song, Y.; Lu, X. Ensemble EMD-based signal denoising using modified interval thresholding. IET Signal Process. 2017, 11, 452–461. [Google Scholar] [CrossRef]
- Hsin, J.; Arkhipov, A.; Yin, Y.; Stone, J.E.; Schulten, K. Using VMD: An introductory tutorial. Curr. Protoc. Bioinform. 2008, 24, 5.7.1–5.7.48. [Google Scholar] [CrossRef]
- Sapucci, C.R.; Mayta, V.C.; da Silva Dias, P.L. South American intraseasonal oscillation: EOF and neural network approaches. J. Geophys. Res. Atmos. 2025, 130, e2024JD041988. [Google Scholar] [CrossRef]
- Weylandt, M.; Swiler, L.P. Beyond PCA: Additional dimension reduction techniques to consider in the development of climate fingerprints. J. Clim. 2024, 37, 1723–1735. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Geng, J.; Chen, Q. Global Mean Sea Level Change Projections up to 2100 Using a Weighted Singular Spectrum Analysis. J. Mar. Sci. Eng. 2024, 12, 2124. [Google Scholar] [CrossRef]
- Kang, Y.; Qu, W.; Lu, Z.; Peng, M.; Zou, Z.; Gong, M.; Zhang, H. Integrating InSAR, ICA, and geophysical models to decipher the kinematics of Huangtupo landslide. Geomat. Nat. Hazards Risk 2025, 16, 2550564. [Google Scholar] [CrossRef]
- WróBlewski, A. The application of EOF in determining basin mean sea level using computations for the Baltic as an example. Sea Level Changes Determ. Eff. 1992, 69, 23–28. [Google Scholar]
- Pradeep, M.; Narasimhan, S. Recursive iterative Principal Component Analysis. Comput. Chem. Eng. 2025, 201, 109170. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, W.; Xu, Z.; Dai, W. Optimal subsampling for principal component analysis. In Science China Mathematics; Science China Press: Beijing, China, 2025; pp. 1–24. [Google Scholar]
- Fu, Y.; Fan, X.; Cao, J. An imputation method based on the varimax variant of multivariate singular spectrum analysis. IEEE Access 2024, 12, 127749–127767. [Google Scholar] [CrossRef]
- Raj, N.; Brown, J. Prediction of mean sea level with GNSS-VLM correction using a hybrid deep learning model in Australia. Remote Sens. 2023, 15, 2881. [Google Scholar] [CrossRef]
- Bagnell, A.; DeVries, T. Global mean sea level rise inferred from ocean salinity and temperature changes. Geophys. Res. Lett. 2023, 50, e2022GL101004. [Google Scholar] [CrossRef]
- Tang, C.; Chen, H.; Jiang, Y.; Jiao, W.; Sun, J.; Xu, C.; Wang, C.; Xia, H. An improved method for signal de-noising based on multi-level local mean decomposition. Eng. Rep. 2023, 5, e12677. [Google Scholar] [CrossRef]
- Ludwig, P.; Schaffernicht, E.J.; Shao, Y.; Pinto, J.G. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res. Atmos. 2016, 121, 2130–2145. [Google Scholar] [CrossRef]
- Chang, N.; Vasquez, M.V.; Chen, C.; Imen, S.; Mullon, L. Global nonlinear and nonstationary climate change effects on regional precipitation and forest phenology in Panama, Central America. Hydrol. Process. 2015, 29, 339–355. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Glantz, M.H.; Ramirez, I.J. Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. Int. J. Disaster Risk Sci. 2020, 11, 394–403. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Hao, L.S.; He, L.Y.; Cheng, S.J. Co-variation modes of tropical Indo-Pacific SST and summer precipitation anomaly in the Haihe River basin and its application on precipitation prediction. Chin. J. Geophys. 2024, 67, 2069–2084. [Google Scholar]
- Jiang, L.; Yu, K.; Tao, S.; Wang, S.; Han, T.; Jiang, W. ENSO variability during the Medieval Climate Anomaly as recorded by Porites corals from the northern South China Sea. Paleoceanogr. Paleoclimatology 2021, 36, e2020PA004173. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, Z.; Ge, H.; Xu, C.; Zhang, J. Wavelet-Transform-Based Neural Network for Tidal Flat Remote Sensing Image Deblurring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 6152–6163. [Google Scholar] [CrossRef]
- Komaty, A.; Boudraa, A.-O.; Augier, B.; Dare-Emzivat, D. EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE Trans. Instrum. Meas. 2013, 63, 27–34. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, J.; Chen, Y.; Wang, D.; Zhu, W.; Zhou, E.; Zhang, J.; Hu, G.; Yun, B.; Cui, Y. High-Precision Wide-Range FBG interrogation based on AWG and Ultra-Lightweight Machine learning model. Opt. Laser Technol. 2025, 191, 113340. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, H.; Qi, Q.; Luo, X.; Zhang, W.; Feng, K.; Wang, F.; Liu, J. Spatiotemporal variations of precipitation and driving forces during wheat maturation season in Henan Province. Sci. Rep. 2025, 15, 19902. [Google Scholar] [CrossRef]
- Bian, Y.; Yue, J.; Gao, W.; Li, Z.; Lu, D.; Xiang, Y.; Chen, J. Analysis of the spatiotemporal changes of ice sheet mass and driving factors in Greenland. Remote Sens. 2019, 11, 862. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef]
- Tourre, Y.M.; White, W.B. ENSO signals in global upper-ocean temperature. J. Phys. Oceanogr. 1995, 25, 1317–1332. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Zheng, X.; Wang, K.; Li, J. Extreme Ventilation of the North Pacific Central Mode Water by El Niño During Positive Phase of the Pacific Decadal Oscillation. Geophys. Res. Lett. 2025, 52, e2024GL113064. [Google Scholar] [CrossRef]
- Buszman, K. Analysing the impact on underwater noise of changes to the parameters of a ship’s machinery. Pol. Marit. Res. 2020, 27, 176–181. [Google Scholar] [CrossRef]
Adjacent Components | CMSE | |
---|---|---|
1 | () | 14.1850 |
2 | () | 658.3767 |
SNR | RMSE | |
---|---|---|
SURE hard threshold | 7.3622 | 1.6188 |
SURE soft threshold | 7.0152 | 1.6848 |
Minimax hard threshold | 8.1278 | 1.4822 |
Minimax soft threshold | 7.0912 | 1.6701 |
Improved threshold | 8.9945 | 1.3415 |
El Niño Period | Period (Month) | GMSL Increase (mm) | Peak Anomaly (mm) | Strong El Niño (ONI ≥ 1.5 °C) | Phase Lag (Month) |
---|---|---|---|---|---|
October 1994–March 1995 | 6–8 | −1 | 4 | −1 | |
May 1997–May 1998 | 10–16/28–32 | 5 | 8 | Yes | −2/3 |
June 2002–February 2003 | 8–16 | 7 | 14 | 2 | |
July 2004–February 2005 | 8–12 | 7 | 4 | 2 | |
October 2006–January 2007 | 6–8/10–12 | −3 | 7 | −1/1 | |
July 2009–March 2010 | 16–24/28–40 | 5 | 11 | 0/1 | |
October 2014–April 2016 | 8–16/30–40 | 6 | 10 | Yes | 0/2 |
September 2018–May 2019 | 4–8/18–12 | 3 | 6 | 0/0 |
La Niña Period | Period (Month) | GMSL Decrease (mm) | Peak Negative Anomaly (mm) | Strong La Niña (ONI ≤ −1.5 °C) | Phase Lag (Month) |
---|---|---|---|---|---|
August 1995–March 1996 | 10–20 | −3 | −5 | 2 | |
July 1998–February 2001 | 10–20/28–32 | −12 | −8 | Yes | −2/3 |
November 2005–March 2006 | 10–12 | 10 | −1 | 1 | |
June 2007–June 2008 | 4–8/10–12 | −4 | −8 | Yes | −2/0 |
November 2008–March 2009 | 10–16/32–40 | 6 | −2 | −2/0 | |
June 2010–April 2012 | 10–24/32–40 | −4 | −11 | Yes | 0/1 |
August 2016–December 2016 | 8–24/32–40 | −2 | −2 | −2/1 | |
October 2017–March 2018 | 4–8/18–12 | 2 | −4 | 0/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhou, S.; Wang, F.; Wu, H. Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis. J. Mar. Sci. Eng. 2025, 13, 1844. https://doi.org/10.3390/jmse13101844
Yuan X, Zhou S, Wang F, Wu H. Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis. Journal of Marine Science and Engineering. 2025; 13(10):1844. https://doi.org/10.3390/jmse13101844
Chicago/Turabian StyleYuan, Xilong, Shijian Zhou, Fengwei Wang, and Huan Wu. 2025. "Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis" Journal of Marine Science and Engineering 13, no. 10: 1844. https://doi.org/10.3390/jmse13101844
APA StyleYuan, X., Zhou, S., Wang, F., & Wu, H. (2025). Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis. Journal of Marine Science and Engineering, 13(10), 1844. https://doi.org/10.3390/jmse13101844