Straight-Line Trajectory Tracking Control of Unmanned Sailboat Based on NMPC Velocity and Heading Joint Control
Abstract
:1. Introduction
1.1. Current Status of the Research on Velocity and Heading Control
1.2. Current Status of Path Tracking Research
- (1)
- This paper proposes a velocity and heading joint control method for unmanned sailboats based on NMPC to address the coupling between control inputs. It ensures the joint control of the velocity and heading while accounting for the state constraints. The NMPC method is well-suited for solving coupled control problems and effectively handles the optimization problems with constraints.
- (2)
- This paper proposes a straight-line trajectory tracking method for unmanned sailboats based on LOS guidance and Lyapunov stability theory. The method calculates the sailboat’s speed and heading required for straight-line trajectory tracking and realizes the tracking of both velocity and heading using the NMPC-based joint control method.
- (3)
- This paper proposes a Z-shaped upwind trajectory tracking strategy with lateral error constraints, ensuring that the longitudinal error converges to zero while the lateral error remains within the defined range. The designed maximum allowable lateral error prevents the unmanned sailboat from straying too far from the trajectory and minimizes frequent heading changes.
2. Dynamic Model of Unmanned Sailboats
3. NMPC-Based Velocity and Heading Control of Unmanned Sailboats
3.1. Introduction of NMPC
3.2. Velocity and Heading Control of an Unmanned Sailboat Based on NMPC
3.2.1. Optimization Function
3.2.2. Constraints
3.2.3. Discretization
4. Trajectory Tracking Control of Unmanned Sailboats
4.1. Trajectory Tracking Method Outside the Dead Zone
4.2. Trajectory Tracking in the Sailing Dead Zone
5. Simulation Results
5.1. Results of Velocity and Heading Coordinated Control Based on NMPC
5.1.1. Comparison of Velocity and Heading Control: NMPC, PID, and MPC Under Constant Wind Conditions
5.1.2. Velocity–Heading Coordinated Control of Unmanned Sailboats Based on NMPC Under Variable Wind Conditions
5.2. Trajectory Tracking Results
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Specific Expressions and Parameter Meanings
Parameter Description | Parameter Name | Value |
---|---|---|
Mass | Total mass /kg | 230 |
Parameters affecting roll stability | Initial stability height | 0.32 |
Sail, rudder, and keel area (used to calculate the lift and drag) | Sail reference area /m2 | 1.6 |
Rudder reference area /m2 | 0.048 | |
Keel reference area /m2 | 0.127 | |
The position in the body coordinate system (origin at the sailboat center of gravity) | Sail (xs, ys, zs)/m Rudder (xr, yr, zr)/m Keel (xk, yk, zk)/m Hull (xh, yh, zh)/m Mast x-coordinate xm/m | (0.56, 0, −1.65) |
(−1.6, 0, −0.08) | ||
(−0.09, 0, −0.25) | ||
(0.11, 0, −0.2) | ||
0.29 | ||
Yaw damping | d | 100 |
Roll damping | BL | 117.72 |
BN | 10.93 | |
Airfoil coefficient (used to calculate the lift and drag) | Sail kcs | 1.8 |
Rudder kcr | 2.2 | |
Keel kck | 1.5 | |
Sailboat resistance curve coefficient | p1 | 0.09721 |
p2 | 3.041 | |
Correction coefficient | 6.23 | |
Constants | Air density /(kg/m3) | 1.2 |
Sea water density /(kg/m3) | 1025 | |
g/(m/s2) | 9.81 | |
Inertial mass parameter | 832.50 | |
44.92 | ||
−23.00 | ||
−117.01 | ||
−11.74 | ||
−172.91 | ||
−8.74 |
References
- Huang, Y.; Wang, Z.; Yu, J.; Zhang, A.; Qiao, J.; Feng, H. Development and Experiments of the Passive Buoyancy Balance System for Sea-Whale 2000 AUV. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019. [Google Scholar]
- An, Y.; Yu, J.; Zhang, J. Autonomous sailboat design: A review from the performance perspective. Ocean. Eng. 2021, 238, 16. [Google Scholar] [CrossRef]
- Tipsuwan, Y.; Sanposh, P.; Techajaroonjit, N. Overview and control strategies of autonomous sailboats—A survey. Ocean Eng. 2023, 281, 114879. [Google Scholar] [CrossRef]
- Xiao, L.; Alves, J.C.; Cruz, N.A.; Jouffroy, J. Online speed optimization for sailing yachts using extremum seeking. In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012. [Google Scholar]
- Corno, M.; Formentin, S.; Savaresi, S.M. Data-Driven Online Speed Optimization in Autonomous Sailboats. IEEE Trans. Intell. Transp. Syst. 2016, 17, 762–771. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, S.; Yu, H.; Guo, C. Online speed optimization with feedforward of unmanned sailboat via extremum seeking without steady-state oscillation. Ocean Eng. 2019, 189, 106393. [Google Scholar] [CrossRef]
- Shen, Z.; Fan, X.; Yu, H.; Guo, C.; Wang, S. A novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control without steady-state oscillation. J. Navig. 2022, 75, 745–762. [Google Scholar] [CrossRef]
- Saoud, H.; Hua, M.-D.; Plumet, F.; Ben Amar, F. Optimal sail angle computation for an autonomous sailboat robot. In Proceedings of the 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015. [Google Scholar]
- Stelzer, R.; Proll, T.; John, R.I. Fuzzy Logic Control System for Autonomous Sailboats. In Proceedings of the IEEE International Fuzzy Systems Conference, London, UK, 23–26 July 2007. [Google Scholar]
- Shen, Z.P.; Zou, T.Y.; Guo, T.T. Adaptive dynamic surface control for nonaffine unmanned sailboat course system with input constraint. Control Theory Technol. 2019, 36, 1461–1468. [Google Scholar]
- Shen, Z.P.; Zhang, X.L. Iterative sliding mode control over sail-assisted ship course based on adaptive heuristic critic algorithm. J. Harbin Eng. Univ. 2017, 38, 1727–1732. [Google Scholar]
- Saoud, H.; Hua, M.D.; Plumet, F.; Ben Amar, F. Modeling and Control Design of a Robotic Sailboat. In The 6th International Robotic Sailing Conference; Springer Publishing Company, Incorporated: Princeton, NJ, USA, 2013; pp. 95–110. [Google Scholar]
- Xiao, L.; Jouffroy, J. Modeling and Nonlinear Heading Control of Sailing Yachts. IEEE J. Ocean. Eng. 2014, 39, 256–268. [Google Scholar] [CrossRef]
- Xiao, L.; Fossen, T.I.; Jouffroy, J. Nonlinear Robust Heading Control for Sailing Yachts. IFAC Proc. Vol. 2012, 45, 404–409. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Liu, C.; Zhang, W. A robust fuzzy speed regulator for unmanned sailboat robot via the composite ILOS guidance. Nonlinear Dyn. 2022, 110, 2465–2480. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Zhang, X.; Zhang, W. Event-triggered robust adaptive control for path following of the URS in presence of the marine practice. Ocean. Eng. 2021, 242, 110139. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, N.; Qi, J.; Chen, X.; Hua, C. Predictive Course Control and Guidance of Autonomous Unmanned Sailboat Based on Efficient Sampled Gaussian Process. J. Mar. Sci. Eng. 2021, 9, 1420. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Li, B.; Zhang, X. Improved Integral LOS Guidance and Path-Following Control for an Unmanned Robot Sailboat via the Robust Neural Damping Technique. J. Navig. 2019, 72, 1378–1398. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, X.; Zhang, G. Line-of-Sight-Based Guidance and Adaptive Neural Path-Following Control for Sailboats. IEEE J. Ocean. Eng. 2019, 45, 1177–1189. [Google Scholar] [CrossRef]
- Zhao, B.G.; Zhang, X.K.; Li, Z.; Liang, C.L. Research on ship motion identification modeling. Ship Sci. Technol. 2021, 43, 4. [Google Scholar]
- Yasukawa, H.; Yoshimura, Y. Introduction of MMG standard method for ship maneuvering predictions. J. Mar. Sci. Technol. 2015, 20, 37–52. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, G. Improvement of Nonlinear Norrbin Mathematical Model for Large Ships. Navig. Tion China 2016, 39, 4. [Google Scholar]
- Shen, Z.-P.; Jiang, Z.-H. Motion model of sail-assisted ship. J. Traffic Transp. Eng. 2015, 15, 57–64. [Google Scholar] [CrossRef]
- Grne, L.; Pannek, J. Nonlinear Model Predictive Control: Theory and Algorithms; Springer Publishing Company, Incorporated: Princeton, NJ, USA, 2013. [Google Scholar]
- Liu, K.; Yu, J.; Zhao, W.; Huang, Y. Speed and heading joint control of an unmanned sailboat based on NMPC. In Proceedings of the 3rd International Conference on Control and Intelligent Robotics (ICCIR 2023), Sipsongpanna, China, 1 December 2023; SPIE: Bellingham, WA, USA, 2023. [Google Scholar]
Velocity constraint | |
Roll angle constraint | |
Heading constraint | |
Sail angle constraint | |
Rudder angle constraint | |
Sail angle change rate constraint | |
Rudder angle change rate constraint |
Wind conditions | = 12 m/s |
= 0 ° | |
Desired velocity | = 1 m/s |
Desired heading | = 130 ° |
Parameters of NMPC | P = [1; 0; 0; 0; 5; 16; 0; 0] |
Q = [0.01; 0.0001] | |
R = [5; 0; 0; 0; 15; 25; 0; 0] | |
Parameters of MPC | P = [25; 10; 0; 0; 5; 10; 0; 10] |
Q = [0; 0.0001] | |
R = [5; 0; 0; 0; 0; 10; 0; 10] | |
Parameters of the PID velocity controller | P = 0.0001 |
I = 0 | |
D = 0 | |
Parameters of the PID heading controller | P = 0.6 |
I = 0 | |
D = 0 |
Method | Steady-State Longitudinal Velocity (m/s) | Steady-State Lateral Velocity (m/s) | Steady-State Longitudinal Velocity Error (m/s) | Steady-State Heading Error (°) | Maximum Roll Angle (°) | Steady-State Roll Angle (°) |
---|---|---|---|---|---|---|
NMPC | 0.99 | −0.02 | 0.01 | 0.04 | 25.00 | −1.13 |
MPC | 1.03 (average) | 0.47 (average) | 0.10 (average) | 4.05 (average) | 25.00 | 25.00 |
PID | 2.48 | −0.01 | −1.48 | −0.00 | 0.68 | −0.04 |
Wind conditions | |
ω is the random number between 0 and 1 | |
Desired velocity | = 1.5 m/s (0–100 s) |
(100–200 s) | |
(200–300 s) | |
Desired heading | (0–100 s) |
(100–200 s) | |
(200–300 s) | |
Parameters of NMPC | |
ud = 1.5 m/s, ψd = 90° | Velocity Error (m/s) | Heading Error (°) | Roll Angle (°) |
---|---|---|---|
Maximum | 0.05 | 1.04 | 4.47 |
Minimum | 0 | 0 | −1.31 |
Average | 0.01 | 0.22 | 1.25 |
ud = 1 m/s, ψd = 90° | Velocity Error (m/s) | Heading Error (°) | Roll Angle (°) |
---|---|---|---|
Maximum | 0.04 | 0.37 | 1.15 |
Minimum | 0 | 0 | −0.69 |
Average | 0.01 | 0.09 | 0.29 |
ud = 1 m/s, ψd = 50° | Velocity Error (m/s) | Heading Error (°) | Roll Angle (°) |
---|---|---|---|
Maximum | 0.05 | 0.79 | 8.96 |
Minimum | 0 | 0 | −5.33 |
Average | 0.01 | 0.16 | 2.09 |
Wind conditions | |
ω is the random number between 0 and 1 | |
Parameters of NMPC | |
Sight | |
Constant | |
Trajectory speed and direction | , (0–1000 s) |
, (1000–2000 s) | |
, (2000–3000 s) |
Time/s | /m | /m | /m | /m | /m | /m | /m | /m | /m |
---|---|---|---|---|---|---|---|---|---|
0–1000 | 4.63 | 0.00 | 0.56 | 2.32 | 0.00 | 0.34 | 5.18 | 0.01 | 0.72 |
1000–2000 | 3.28 | 0.45 | 1.75 | 12.80 | 0.00 | 6.98 | 12.89 | 0.47 | 7.38 |
2000–3000 | 2.31 | 0.00 | 0.41 | 1.65 | 0.00 | 0.29 | 2.53 | 0.01 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Yu, J.; Zhao, W. Straight-Line Trajectory Tracking Control of Unmanned Sailboat Based on NMPC Velocity and Heading Joint Control. J. Mar. Sci. Eng. 2025, 13, 15. https://doi.org/10.3390/jmse13010015
Liu K, Yu J, Zhao W. Straight-Line Trajectory Tracking Control of Unmanned Sailboat Based on NMPC Velocity and Heading Joint Control. Journal of Marine Science and Engineering. 2025; 13(1):15. https://doi.org/10.3390/jmse13010015
Chicago/Turabian StyleLiu, Kai, Jiancheng Yu, and Wentao Zhao. 2025. "Straight-Line Trajectory Tracking Control of Unmanned Sailboat Based on NMPC Velocity and Heading Joint Control" Journal of Marine Science and Engineering 13, no. 1: 15. https://doi.org/10.3390/jmse13010015
APA StyleLiu, K., Yu, J., & Zhao, W. (2025). Straight-Line Trajectory Tracking Control of Unmanned Sailboat Based on NMPC Velocity and Heading Joint Control. Journal of Marine Science and Engineering, 13(1), 15. https://doi.org/10.3390/jmse13010015