Evaluating the Potential of Sea Surface Height Observations and Depth Datum Calculation Using GNSS/IMU Buoys
Abstract
:1. Introduction
2. Data and Methodology
2.1. Tide Gauge
2.2. GNSS/IMU Buoy
- (1)
- It is a fully enclosed IP68 waterproof device, resistant to seawater corrosion, and suitable for repeated deployments.
- (2)
- It is equipped with a high-capacity rechargeable battery and an inductive charging system, and it operates for over 10 h on a full charge.
- (3)
- The Trimble OEM module supports multi-frequency, multi-constellation signals, including GPS L1/L2/L5, GLONASS L1/L2, BeiDou B1/B2, Galileo E1/E5, and QZSS L1/L2/L5. Additionally, it integrates a low-cost IMU.
- (4)
- The IMU used is a Mouser ADIS series chip, which includes sensors such as a gyroscope, accelerometer, magnetometer, barometer, and thermometer, with sampling rates of 20 Hz.
- (5)
- Data are first stored on an SD card with a capacity of up to 256 GB. An internal wireless transmission module, coupled with a custom-developed mobile app, enables control over data recording functions, GNSS data collection, and uploading to a backend server. The app can also query the buoy’s current GNSS positioning and GNSS/IMU status (as shown in Figure 3).
- (6)
- The buoy is designed as a single unit with a diameter of approximately 50 cm, a height of 35 cm, and a weight of around 12 kg, ensuring portability and ease of deployment.
2.3. Methodology
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J.P. New data systems and products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar]
- Passaro, M.; Cipollini, P.; Vignudelli, S.; Quartly, G.D.; Snaith, H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ. 2014, 145, 173–189. [Google Scholar] [CrossRef]
- Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv. Geophys. 2017, 38, 33–57. [Google Scholar] [CrossRef]
- Cardellach, E.; Behrend, D.; Ruffini, G.; Rius, A. The use of GPS buoys in the determination of oceanic variables. Earth Planets Space 2000, 52, 1113–1116. [Google Scholar] [CrossRef]
- Zhou, B.; Watson, C.; Beardsley, J.; Legresy, B.; King, M.A. Development of a GNSS/INS buoy array in preparation for SWOT validation in Bass Strait. Front. Mar. Sci. 2023, 9, 1093391. [Google Scholar] [CrossRef]
- Cheng, K.C.; Kuo, C.Y.; Tseng, H.Z.; Yi, Y.; Shum, C.K. Lake surface height calibration of Jason-1 and Jason-2 over the Great Lakes. Mar. Geod. 2010, 33, 186–203. [Google Scholar] [CrossRef]
- Watson, C.; Coleman, R.; White, N.; Church, J.; Govind, R. Absolute Calibration of TOPEX/Poseidon and Jason-1 Using GPS Buoys in Bass Strait, Australia. Special Issue: Jason-1 Calibration/Validation. Mar. Geod. 2010, 26, 285–304. [Google Scholar] [CrossRef]
- Kato, T.; Terada, Y.; Nagai, T.; Koshimura, S. Tsunami monitoring system using GPS buoy—Present status and outlook. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3043–3046. [Google Scholar]
- Cheng, K.; Kuo, C.Y.; Shum, C.K.; Niu, X.; Li, R.; Bedford, K.W. Accurate linking of Lake Erie water level with shoreline datum using GPS buoy and satellite altimetry. Terr. Atmos. Ocean. Sci. 2008, 19, 53–62. [Google Scholar] [CrossRef]
- Roh, J.Y.; Yoo, K.W.; Suh, Y.C.; Shin, M.S.; Lee, D.H. Determination of vertical datum level for tidal bench mark using GNSS buoy observations. J. Mar. Sci. Technol. 2017, 25, 9. [Google Scholar]
- Lin, Y.P.; Huang, C.J.; Chen, S.H.; Doong, D.J.; Kao, C.C. Development of a GNSS buoy for monitoring water surface elevations in estuaries and coastal areas. Sensors 2017, 17, 172. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Li, S.; Bao, K.; Wang, G.; Teng, F.; Zhang, F.; Wang, Y.; Guan, S.; Wei, Z. Development of GNSS buoy for sea surface elevation observation of offshore wind farm. Remote Sens. 2023, 15, 5323. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, L.; Xu, Y.; Yang, F.; Zhou, X. Retrieving wave parameters from GNSS buoy measurements using the PPP mode. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8004705. [Google Scholar] [CrossRef]
- Tucker, M.J. A shipborne wave recorder. Trans. R. Inst. Nav. Archit. 1956, 98, 236–246. [Google Scholar]
- Huang, Y.L.; Kuo, C.Y.; Shih, C.H.; Lin, L.C.; Chiang, K.W.; Cheng, K.C. Monitoring Multi-Frequency Ocean Signals Using Low-Cost GNSS/IMU Buoys. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016. XLI-B8. Available online: https://www.isprs.org/publications/archives.aspx (accessed on 6 December 2024).
- Knight, P.J.; Bird, C.O.; Sinclair, A.; Higham, J.; Plater, A.J. Beach deployment of a low-cost GNSS buoy for determining sea-level and wave characteristics. Geosciences 2021, 11, 494. [Google Scholar] [CrossRef]
- Kato, T.; Terada, Y.; Kinoshita, M.; Kakimoto, H.; Isshiki, H.; Matsuishi, M.; Yokoyama, A.; Tanno, T. Real-time observation of tsunami by RTK-GPS. Earth Planets Space 2000, 52, 841–845. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Chiu, K.W.; Chiang, K.W.; Cheng, K.; Lin, L.C.; Tseng, H.Z.; Chu, F.Y.; Lan, W.H.; Lin, H.T. High-frequency sea level variations observed by GPS Buoys using Precise Point Positioning technique. Terr. Atmos. Ocean. Sci. 2012, 23, 209–218. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Iliffe, J.C.; Ziebart, M.K.; Turner, J.F. A new methodology for incorporating tide gauge data in sea surface topography models. Mar. Geod. 2007, 30, 271–296. [Google Scholar] [CrossRef]
- Vignudelli, S.; Kostianoy, A.G.; Cipollini, P.; Benveniste, J. (Eds.) Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hocker, B.; Wardwell, N. Tidal datum determination and VDatum evaluation with a GNSS buoy. In Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 21–24 September 2010; pp. 2076–2086. [Google Scholar]
- Lu, Z.; Qu, Y.; Qiao, S. The geoid and different height systems. In Geodesy; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Lan, W.H.; Kuo, C.Y.; Kao, H.C.; Lin, L.C.; Shum, C.K.; Tseng, K.H.; Chang, J.C. Impact of geophysical and datum corrections on absolute sea-level trends from tide gauges around Taiwan, 1993–2015. Water 2017, 9, 480. [Google Scholar] [CrossRef]
- Waypoint Products Group. GrafNav/GrafNet 8.70 User Manual; Waypoint Products Group: Vancouver, BC, Canada, 2016. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Bucy, R.S.; Senne, K.D. Digital synthesis of non-linear filters. Automatica 1971, 7, 287. [Google Scholar] [CrossRef]
- Gelb, A. Applied Optimal Estimation; The M.I.T. Press, Massachusetts Institute of Technology: Cambridge, MA, USA, 1974. [Google Scholar]
- Shin, E. Accuracy Improvement of Low-Cost INS/GPS for Land Applications; UCGE Reports Number 20156. Master’s Thesis, The University of Calgary, Calgary, AB, Canada, 2001. [Google Scholar]
- Riley, J.L.; Murray, B.R.; Hauser, O.A.; Wolcott, D.B.; Heitsenrether, R.M.; Gill, S.K. GPS Water Level Buoy for Hydrographic Survey Applications; Final Report: Proof-of-Concept/NWLON-Comparison Project; NOAA: Silver Spring, MD, USA, 2014. [Google Scholar]
- Ching, K.E.; Hsieh, M.L.; Johnson, K.M.; Chen, K.H.; Rau, R.J.; Yang, M. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. J. Geophys. Res. 2011, 116, B08406. [Google Scholar] [CrossRef]
- Hung, W.C.; Hwang, C.; Chen, Y.A.; Zhang, L.; Chen, K.H.; Wei, S.H.; Huang, D.R.; Lin, S.H. Land subsidence in Chiayi, Taiwan, from compaction well, leveling and ALOS/PALSAR: Aquaculture-induced relative sea level rise. Remote Sens. 2018, 10, 40. [Google Scholar] [CrossRef]
- Thomson, J.; Bush, P.; Castillo Contreras, V.; Clemett, N.; Davis, J.; de Klerk, A.; Iseley, E.; Rainville, E.J.; Salmi, B.; Talbert, J. Development and testing of microSWIFT expendable wave buoys. Coast. Eng. J. 2023, 66, 168–180. [Google Scholar] [CrossRef]
TG ID | Name | Lat (°) | Lon (°) | Benchmark ID | TWD97[2010] (m) * | TWVD2001 (m) ** |
---|---|---|---|---|---|---|
112 | Hsinchu | 24°50′55″ N | 120°55′14″ E | 82043 | 22.399 | 3.451 |
113 | Waipu | 24°39′05″ N | 120°46′17″ E | TG06A | 23.199 | 4.199 |
1102 | Tamsui | 25°10′33″ N | 121°25′29″ E | TG31 | 23.068 | 3.448 |
1116 | Jhuwei | 25°07′05″ N | 121°14′36″ E | TG04 | 21.535 | 2.300 |
1156 | Boziliao | 23°37′07″ N | 120°08′15″ E | TG08 | 20.492 | 0.969 |
1166 | Dongshi | 23°27′00″ N | 120°8′22″ E | TG10X | 22.612 | 2.904 |
1176 | Jiangjun | 23°12′45″ N | 120°04′59″ E | TG32 | 22.040 | 2.400 |
1186 | Donggang | 22°27′54″ N | 120°26′18″ E | TG33 | 23.235 | 2.480 |
1196 | Houbihu | 21°56′45″ N | 120°44′43″ E | TG34 | 23.882 | 1.905 |
1206 | Linshanbi | 25°17′02″ N | 121°30′37″ E | TG02 | 22.408 | 2.686 |
1226 | Longdong | 25°05′51″ N | 121°55′05″ E | TG21 | 23.528 | 2.785 |
1236 | Wushi | 24°52′02″ N | 121°50′15″ E | TG35A | 22.505 | 1.989 |
1246 | Su-ao | 24°35′33″ N | 121°52′01″ E | TG20A | 22.194 | 2.183 |
1256 | Hualien | 23°58′50″ N | 121°37′25″ E | TG19 | 23.307 | 2.458 |
1276 | Chenggong | 23°05′50″ N | 121°22′49″ E | TG17-1 | 28.023 | 2.664 |
1356 | Penghu | 23°33′37″ N | 119°34′37″ E | TG73 | 20.718 | 2.247 |
1366 | Wengang | 23°28′00″ N | 120°07′21″ E | TG09 | 25.410 | 5.682 |
1386 | Liuchiu | 22°21′12″ N | 120°23′00″ E | TG74 | 24.276 | 3.430 |
1396 | Lanyu | 22°03′29″ N | 121°30′25″ E | TG75-1 | 27.922 | 2.807 |
1436 | Taichung Port | 24°17′16″ N | 120°31′59″ E | TG07 | 22.215 | 3.504 |
1456 | Mailiau | 23°47′10″ N | 120°09′37″ E | ML01 | 23.882 | 4.676 |
1486 | Kaohsiung | 22°36′52″ N | 120°17′18″ E | TG12 | 21.775 | 1.535 |
1496 | Syunguangzui | 21°59′08″ N | 120°42′43″ E | TG14X | 23.802 | 1.921 |
1516 | Keelung | 25°09′18″ N | 121°45′08″ E | TG01 | 21.990 | 1.554 |
1552 | Heping Port | 24°18′11″ N | 121°45′22″ E | HP02 | 29.621 | 9.921 |
1566 | Shihti | 23°29′41″ N | 121°30′22″ E | TG18 | 27.539 | 4.213 |
1586 | Fugang | 22°47′27″ N | 121°11′35″ E | TG16-1 | 27.055 | 2.319 |
1596 | Dawu | 22°20′15″ N | 120°53′50″ E | TG15 | 26.390 | 3.011 |
1676 | Lyudao | 22°39′44″ N | 121°27′53″ E | TG76 | 27.444 | 2.654 |
1786 | Yongan | 22°49′08″ N | 120°11′51″ E | TG11X | 24.203 | 4.146 |
1926 | Mazu | 26°09′42″ N | 119°56′34″ E | TG71-1 | 17.375 | 3.327 |
1956 | Kinmen | 24°24′31″ N | 118°25′48″ E | TG72XB | 15.298 | 3.447 |
1966 | Shuitou | 24°25′16″ N | 118°17′21″ E | KM28 | 15.331 | 4.143 |
11781 | Sicao | 23°01′25″ N | 120°06′43″ E | CC01 | 22.482 | 2.815 |
TG ID | Name | Observation Epoch | Mean of Differences (m) | STD of Differences (cm) |
---|---|---|---|---|
112 | Hsinchu | 31.07.2019 | 0.055 | 8.8 |
113 | Waipu | 01.08.2019 | 0.021 | 8.8 |
1102 | Tamsui | 02.08.2019 | −0.019 | 6.5 |
1116 | Jhuwei | 30.07.2019 | −0.043 | 6.1 |
1156 | Boziliao | 16.08.2019 | −0.213 | 3.2 |
1166 | Dongshi | 03.12.2019 | −0.214 | 1.1 |
1176 | Jiangjun | 19.08.2019 | −0.033 | 4.1 |
1186 | Donggang | 05.12.2019 | −0.023 | 3.3 |
1196 | Houbihu | 06.12.2019 | −0.124 | 2.7 |
1206 | Linshanbi | 28.07.2019 | −0.040 | 1.7 |
1226 | Longdong | 10.08.2019 | −0.033 | 2.9 |
1236 | Wushi | 10.08.2019 | −0.049 | 2.1 |
1246 | Su−ao | 12.08.2019 | −0.032 | 1.8 |
1256 | Hualien | 14.08.2019 | 0.056 | 3.7 |
1276 | Chenggong | 22.08.2019 | 0.001 | 3.8 |
1356 | Penghu | 25.12.2019 | −0.031 | 1.4 |
1366 | Wengang | 18.08.2019 | −0.175 | 2.4 |
1386 | Liuchiu | 08.10.2019 | 0.018 | 1.8 |
1396 | Lanyu | 25.09.2019 | 0.053 | 3.1 |
1436 | Taichung Port | 15.08.2019 | −0.068 | 5.2 |
1456 | Mailiau | 07.10.2019 | −0.223 | 3.1 |
1486 | Kaohsiung | 20.08.2019 | 0.014 | 2.5 |
1496 | Syunguangzui | 28.09.2019 | −0.159 | 2.3 |
1516 | Keelung | 19.09.2019 | −0.022 | 2.7 |
1552 | Heping Port | 13.08.2019 | −0.110 | 3.2 |
1566 | Shihti | 21.08.2019 | −0.152 | 4.4 |
1586 | Fugang | 24.09.2019 | −0.035 | 2.6 |
1596 | Dawu | 23.09.2019 | −0.026 | 3.6 |
1676 | Lyudao | 26.09.2019 | −0.056 | 3.9 |
1786 | Yongan | 18.10.2019 | 0.019 | 2.6 |
1926 | Mazu | 04.09.2019 | 0.014 | 6.0 |
1956 | Kinmen | 12.10.2019 | 0.108 | 4.3 |
1966 | Shuitou | 13.10.2019 | 0.634 | 9.4 |
11781 | Sicao | 27.08.2019 | 0.027 | 3.6 |
Mean | −0.025 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-Y.; Lan, W.-H.; Lee, C.-M.; Kao, H.-C. Evaluating the Potential of Sea Surface Height Observations and Depth Datum Calculation Using GNSS/IMU Buoys. J. Mar. Sci. Eng. 2025, 13, 110. https://doi.org/10.3390/jmse13010110
Kuo C-Y, Lan W-H, Lee C-M, Kao H-C. Evaluating the Potential of Sea Surface Height Observations and Depth Datum Calculation Using GNSS/IMU Buoys. Journal of Marine Science and Engineering. 2025; 13(1):110. https://doi.org/10.3390/jmse13010110
Chicago/Turabian StyleKuo, Chung-Yen, Wen-Hau Lan, Chi-Ming Lee, and Huan-Chin Kao. 2025. "Evaluating the Potential of Sea Surface Height Observations and Depth Datum Calculation Using GNSS/IMU Buoys" Journal of Marine Science and Engineering 13, no. 1: 110. https://doi.org/10.3390/jmse13010110
APA StyleKuo, C.-Y., Lan, W.-H., Lee, C.-M., & Kao, H.-C. (2025). Evaluating the Potential of Sea Surface Height Observations and Depth Datum Calculation Using GNSS/IMU Buoys. Journal of Marine Science and Engineering, 13(1), 110. https://doi.org/10.3390/jmse13010110