Gaze-Assisted Prescribed Performance Controller for AUV Trajectory Tracking in Time-Varying Currents
Abstract
:1. Introduction
- We introduce a gaze-assisted prescribed performance error transformation. Unlike the method in [34], our approach uses the LOS technique tailored to AUV motion characteristics to improve convergence behavior. This reduces the maximum and average tracking errors by over 27.2%.
- The proposed controller does not require prior model parameters. It reduces steady-state errors using dynamic compensation terms. Unlike adaptive robust control [17], our method does not rely on model parameter identification, making it more practical for experiments.
- Simulations with unknown time-varying ocean currents show our control strategy improves tracking accuracy by 67.3% compared to adaptive robust control [17]. It ensures both transient and steady-state performance without requiring model parameters.
2. Materials and Methods
2.1. Control Framework Design
2.1.1. Kinematics and Dynamics of Underactuated AUVs
2.1.2. Error Systems
2.1.3. Control Objective
2.2. Control Design
2.2.1. Gaze-Assisted Error Transformation
- (1)
- , ;
- (2)
- ;
- (3)
- .
2.2.2. Control for AUV Trajectory Tracking
3. Results
- (1)
- , represents the maximum value of the error after the AUV tracks a straight line and stabilizes, that is, the error range after convergence is within this range. Specifically, this metric identifies the largest error within the time interval [1900 s, 2200 s] along this trajectory segment.
- (2)
- , signifies the maximum value of the error after the AUV tracks a spiral and stabilizes, that is, the error range after convergence is within this range. Specifically, this parameter captures the peak error within the time span [450 s, 650 s] for this trajectory segment.
- (3)
- , represents the average tracking error of the AUV throughout the entire driving process.
- (4)
- , the average control input of , is used to evaluate the amount of control effort.
- (5)
- , the average control input of and , is used to evaluate the amount of control effort.
3.1. Simulations with Modeling Inaccuracies
3.2. Simulations with Modeling Inaccuracies and Unknown Ocean Currents
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Symbols | Description | Symbol | Description |
} | Reference frame fixed to body of vehicle | Body-fixed linear velocity | |
} | Reference frame fixed to earth | Body-fixed angular velocity | |
in the world reference frame {W} | |||
Euler angle of reference frame {A} compared to the world reference frame {W} | |||
Tracking errors for the first and second loops | (i = 1,2,3) | express the pitch torques and the yaw torques |
Symbols | Description | Symbols | Description |
diag() | (i = 1,2,3,5,6) | Mass and added mass effects | |
, , , | Hydrodynamic coefficients for linear drag terms | ||
, , , | Coefficients for quadratic drag terms | ||
-coordinate of the center of gravity in {A} | |||
-coordinate of the center of buoyancy in {A} | |||
W | Vehicle’s gravity force | ||
B | Vehicle’s buoyancy force | ||
Forward force | |||
Pitch torque | |||
Yaw torque | |||
- (1)
- The inertia terms: 215 kg, 265 kg, 265 kg, 80 kg, and 80 kg;
- (2
- The linear drag hydrodynamic coefficient terms: 70 kg/s, 100 kg/s, 100 kg/s, 50 kgs, and 50 kgs;
- (3)
- The quadratic drag hydrodynamic coefficient terms: 100 kg/m, 200 kg/m, 200 kg/m, 100 kg, and 100 kg;
- (4)
- The other parameters: 185 kg, 1813 N, 1813 N, and m, m.
Symbols | Description | Symbol | Description |
Symbols | Description | Symbols | Description |
References
- Su, X.; Ullah, I.; Liu, X.; Choi, D. A Review of Underwater Localization Techniques, Algorithms, and Challenges. J. Sens. 2020, 2020, 6403161. [Google Scholar] [CrossRef]
- Ullah, I.; Chen, J.; Su, X.; Esposito, C.; Choi, C. Localization and Detection of Targets in Underwater Wireless Sensor Using Distance and Angle Based Algorithms. IEEE Access 2019, 7, 45693–45704. [Google Scholar] [CrossRef]
- Yu, H.; Guo, C.; Yan, Z. Globally finite-time stable three-dimensional trajectory-tracking control of underactuated UUVs. Ocean Eng. 2019, 189, 106329. [Google Scholar] [CrossRef]
- Lin, M.; Yang, C. Ocean Observation Technologies: A Review. Chin. J. Mech. Eng. 2020, 33, 32. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Qiao, L. Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 2015, 105, 54–63. [Google Scholar] [CrossRef]
- Aguiar, A.P.; Hespanha, J.P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 2007, 52, 1362–1379. [Google Scholar] [CrossRef]
- Lin, M.; Lin, R.; Li, D.; Yang, C. Light Beacon-Aided AUV Electromagnetic Localization for Landing on a Planar Docking Station. IEEE J. Ocean. Eng. 2023, 48, 677–688. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; Wiley: Chichester, UK, 2011. [Google Scholar]
- Yuh, J. Design and Control of Autonomous Underwater Robots: A Survey. Auton. Robot. 2000, 8, 7–24. [Google Scholar] [CrossRef]
- Yan, Z.; Yu, H.; Zhang, W.; Li, B.; Zhou, J. Globally finite-time stable tracking control of underactuated UUVs. Ocean Eng. 2015, 107, 132–146. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, W. Double-Loop Integral Terminal Sliding Mode Tracking Control for UUVs With Adaptive Dynamic Compensation of Uncertainties and Disturbances. IEEE J. Ocean. Eng. 2019, 44, 29–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, S.; Tian, X. Three-dimensional formation–containment control of underactuated AUVs with heterogeneous uncertain dynamics and system constraints. Ocean Eng. 2021, 238, 109661. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, Y.; Sang, H.; Yu, P.; Zhang, S. Adaptive path following control for Wave gliders in time-varying environment. Ocean Eng. 2020, 218, 108165. [Google Scholar] [CrossRef]
- Gu, N.; Wang, D.; Peng, Z.; Wang, J.; Han, Q.-L. Advances in Line-of-Sight Guidance for Path Following of Autonomous Marine Vehicles: An Overview. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 12–28. [Google Scholar] [CrossRef]
- Rober, N.; Hammond, M.; Cichella, V.; Martin, J.E.; Carrica, P. 3D path following and L1 adaptive control for underwater vehicles. Ocean Eng. 2022, 253, 110971. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, X.; Lapierre, L.; Zhang, Q.; Li, W. Approach-angle-based three-dimensional indirect adaptive fuzzy path following of under-actuated AUV with input saturation. Appl. Ocean Res. 2021, 107, 102486. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, M.; Li, D. A double-loop control framework for AUV trajectory tracking under model parameters uncertainties and time-varying currents. Ocean. Eng. 2022, 265, 112566. [Google Scholar] [CrossRef]
- Li, J.; Fan, Y.; Liu, J. Adaptive NN formation tracking control for the multiple underactuated USVs with prescribed performance and input saturations. Ocean. Eng. 2023, 290, 116274. [Google Scholar] [CrossRef]
- Fossen, T.I.; Pettersen, K.Y.; Galeazzi, R. Line-of-Sight Path Following for Dubins Paths With Adaptive Sideslip Compensation of Drift Forces. IEEE Trans. Control Syst. Technol. 2015, 23, 820–827. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.; He, B.; Wang, D.; Wan, J.; Sha, Q.; Qin, P. Drift angle compensation-based adaptive line-of-sight path following for autonomous underwater vehicle. Appl. Ocean Res. 2019, 93, 101943. [Google Scholar] [CrossRef]
- Jalving, B. The NDRE-AUV flight control system. IEEE J. Ocean. Eng. 1994, 19, 497–501. [Google Scholar] [CrossRef]
- Lin, M.; Lin, R.; Yang, C.; Li, D.; Zhang, Z.; Zhao, Y.; Ding, W. Docking to an underwater suspended charging station: Systematic design and experimental tests. Ocean Eng. 2022, 249, 110766. [Google Scholar] [CrossRef]
- Wang, N.; Su, S.F.; Yin, J.; Zheng, Z.; Er, M.J. Global Asymptotic Model-Free Trajectory-Independent Tracking Control of an Uncertain Marine Vehicle: An Adaptive Universe-Based Fuzzy Control Approach. IEEE Trans. Fuzzy Syst. 2018, 26, 1613–1625. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Zhao, X.; Gao, J. Adaptive fuzzy inverse trajectory tracking control of underactuated underwater vehicle with uncertainties. Ocean Eng. 2016, 121, 123–133. [Google Scholar] [CrossRef]
- Bhat, S.; Panteli, C.; Stenius, I.; Dimarogonas, D.V. Nonlinear model predictive control for hydrobatics: Experiments with an underactuated AUV. J. Field Robot. 2023, 40, 1840–1859. [Google Scholar] [CrossRef]
- Chen, G.; Lu, Y.; Yang, X.; Hu, H. Reinforcement learning control for the swimming motions of a beaver-like, single-legged robot based on biological inspiration. Robot. Auton. Syst. 2022, 154, 104116. [Google Scholar] [CrossRef]
- Yan, J.; Li, X.; Yang, X.; Luo, X.; Hua, C.; Guan, X. Integrated Localization and Tracking for AUV With Model Uncertainties via Scalable Sampling-Based Reinforcement Learning Approach. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6952–6967. [Google Scholar] [CrossRef]
- Ashrafiuon, H.; Muske, K.R.; McNinch, L.C.; Solta, R.A. Sliding mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 2008, 55, 4004–4012. [Google Scholar] [CrossRef]
- Tijjani, A.S.; Chemori, A.; Ali, S.A.; Creuze, V. Continuous–Discrete Observation-Based Robust Tracking Control of Underwater Vehicles: Design, Stability Analysis, and Experiments. IEEE Trans. Control Syst. Technol. 2023, 31, 1477–1492. [Google Scholar] [CrossRef]
- Smallwood, D.A.; Whitcomb, L.L. Model-based dynamic positioning of underwater robotic vehicles: Theory and experiment. IEEE J. Ocean. Eng. 2004, 29, 169–186. [Google Scholar] [CrossRef]
- Krstic, I.K.M.; Kokotovic, P.V. Nonlinear and Adaptive Control Design; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Reed, J.S.; Ioannou, P.A. Instability analysis and robust adaptive control of robotic manipulators. IEEE Trans. Robot. Autom. 1989, 5, 381–386. [Google Scholar] [CrossRef]
- Young, K.D.; Utkin, V.I.; Ozguner, U. A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 1999, 7, 328–342. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Miao, Z.; Zhong, H.; Fierro, R. Low-Complexity Control for Vision-Based Landing of Quadrotor UAV on Unknown Moving Platform. IEEE Trans. Ind. Inform. 2022, 18, 5348–5358. [Google Scholar] [CrossRef]
- Pettersen, K.Y.; Egeland, O. Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle. IEEE Trans. Autom. Control 1999, 44, 112–115. [Google Scholar] [CrossRef]
- Bin, Y.; Al-Majed, M.; Tomizuka, M. High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments. IEEE/ASME Trans. Mechatron. 1997, 2, 63–76. [Google Scholar] [CrossRef]
Performance Indices | [m] | [m] | [m] | [N] | [N/m] |
---|---|---|---|---|---|
DCARC | 0.0757 | 0.1122 | 2.2603 | 354.2057 | 35.4269 |
PPC | 2.4531 | 2.3074 | 3.3937 | 361.9542 | 26.6106 |
GAPPC | 0.0443 | 0.0131 | 2.4698 | 353.7242 | 59.0387 |
Performance Indices | [m] | [m] | [m] | [N] | [N/m] |
---|---|---|---|---|---|
DCARC | 0.2526 | 0.2451 | 2.0944 | 390.1219 | 34.5640 |
PPC | 2.7805 | 2.8115 | 3.3939 | 397.7357 | 27.2189 |
GAPPC | 0.0540 | 0.0802 | 2.3508 | 387.9854 | 44.8443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lin, M.; Li, D.; Lin, R. Gaze-Assisted Prescribed Performance Controller for AUV Trajectory Tracking in Time-Varying Currents. J. Mar. Sci. Eng. 2024, 12, 1643. https://doi.org/10.3390/jmse12091643
Zhang Z, Lin M, Li D, Lin R. Gaze-Assisted Prescribed Performance Controller for AUV Trajectory Tracking in Time-Varying Currents. Journal of Marine Science and Engineering. 2024; 12(9):1643. https://doi.org/10.3390/jmse12091643
Chicago/Turabian StyleZhang, Zhuoyu, Mingwei Lin, Dejun Li, and Ri Lin. 2024. "Gaze-Assisted Prescribed Performance Controller for AUV Trajectory Tracking in Time-Varying Currents" Journal of Marine Science and Engineering 12, no. 9: 1643. https://doi.org/10.3390/jmse12091643
APA StyleZhang, Z., Lin, M., Li, D., & Lin, R. (2024). Gaze-Assisted Prescribed Performance Controller for AUV Trajectory Tracking in Time-Varying Currents. Journal of Marine Science and Engineering, 12(9), 1643. https://doi.org/10.3390/jmse12091643