Prediction of Pile Running during Installation Using Deep Learning Method
Abstract
:1. Introduction
2. Methodology
2.1. Dataset
2.2. DL Model Development
2.3. Traditional Methods
3. Performance
3.1. Predictive Accuracy
3.2. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Randolph, M.F. Science and empiricism in pile foundation design. Geotechnique 2003, 53, 847–874. [Google Scholar] [CrossRef]
- Randolph, M.; Cassidy, M.; Gourvenec, S.; Erbrich, C. Challenges of offshore geotechnical engineering. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005; pp. 123–176. [Google Scholar]
- Yang, Z.X.; Gao, Y.Y.; Jardine, R.J.; Guo, W.B.; Wang, D. Large deformation finite-element simulation of displacement-pile installation experiments in sand. J. Geotech. Geoenviron. Eng. 2020, 146, 04020044. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.H.; Zhou, Y.R.; Jiang, B.F.; Wang, J.B. Premature refusal of large-diameter, deep-penetration piles on an offshore platform. Appl. Ocean Res. 2013, 42, 55–59. [Google Scholar]
- Zhao, H.; Wang, L.; Sun, L.Q.; Tian, Y.H.; Reul, O.; Chen, Q.Z. Pile running in layered soils. China Ocean Eng. 2023, 37, 829–841. [Google Scholar] [CrossRef]
- Senders, M.; Banimahd, M.; Zhang, T.; Lane, A. Piled foundations on the North West Shelf. Aust. Geomech. 2013, 48, 149–160. [Google Scholar]
- Banimahd, M.; Chow, F.C.; Tyler, S.; Senders, M.; Stewart-Wynne, R. In Hold-back anchor piles with free fall potential on the Australian north-west shelf. In Proceedings of the Offshore Site Investigation Geotechnics 8th International Conference Proceeding, London, UK, 12–14 September 2017. [Google Scholar]
- Dover, A.R.; Davidson, J. Large diameter steel pipe piles running under self weight in soft clay: Predicted vs. observed behavior—Richmond San-Rafael Bridge seismic retrofit. In Proceedings of the 11th Triennial International Conference on Ports, San Diego, CA, USA, 25–28 March 2007; pp. 1–10. [Google Scholar]
- Yan, S.W.; Jia, Z.L.; Liu, W.B.; Li, J. Research on the large diameter and supper long pile running under self-weight in the ocean engineering. J. Coast. Res. 2015, 73, 809–814. [Google Scholar] [CrossRef]
- Sun, L.Q.; Wang, Y.D.; Guo, W.; Yan, S.W.; Chu, J.; Liu, X.Q. Case study on pile running during the driving process of large-diameter pipe piles. Mar. Georesources Geotechnol. 2018, 36, 709–721. [Google Scholar] [CrossRef]
- Sun, L.Q.; Shi, J.; Zhang, Y.R.; Feng, X.W.; Tian, Y.H.; Wang, R. Analytical method for predicting pile running during driving. Appl. Ocean Res. 2022, 125, 103234. [Google Scholar] [CrossRef]
- Sun, L.Q.; Jia, T.Q.; Yan, S.W.; Guo, W.; Ren, Y.X.; Lei, Z.M. Prediction of pile running during the driving process of large diameter pipe piles. Ocean Eng. 2016, 128, 48–57. [Google Scholar] [CrossRef]
- DeNicola, A.; Randolph, M.F. The plugging behaviour of driven and jacked piles in sand. Geotechnique 1997, 47, 841–856. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.P.; Fuhg, J.N.; Weissenfels, C.; Wriggers, P. A machine learning based plasticity model using proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 2020, 365, 113008. [Google Scholar] [CrossRef]
- Habibagahi, G.; Bamdad, A. A neural network framework for mechanical behavior of unsaturated soils. Can. Geotech. J. 2003, 40, 684–693. [Google Scholar] [CrossRef]
- Pooya Nejad, F.; Jaksa, M.B.; Kakhi, M.; McCabe, B.A. Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput. Geotech. 2009, 36, 1125–1133. [Google Scholar] [CrossRef]
- Singh, G.; Walia, B.S. Performance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networks. Neural Comput. Appl. 2017, 28, 289–298. [Google Scholar] [CrossRef]
- Dieu Tien, B.; Tsangaratos, P.; Viet-Tien, N.; Ngo Van, L.; Phan Trong, T. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena 2020, 188, 104426. [Google Scholar]
- Zhang, W.G.; Li, H.R.; Li, Y.Q.; Liu, H.L.; Chen, Y.M.; Ding, X.M. Application of deep learning algorithms in geotechnical engineering: A short critical review. Artif. Intell. Rev. 2021, 54, 5633–5673. [Google Scholar] [CrossRef]
- Zhang, W.G.; Gu, X.; Tang, L.B.; Yin, Y.P.; Liu, D.S.; Zhang, Y.M. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022, 109, 1–17. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Orr, G.B.; Muller, K.R. Efficient backprop. Neural Netw. Tricks Trade 1998, 1524, 9–50. [Google Scholar]
- Baghbani, A.; Choudhury, T.; Costa, S.; Reiner, J. Application of artificial intelligence in geotechnical engineering: A state-of-the-art review. Earth-Sci. Rev. 2022, 228, 103991. [Google Scholar] [CrossRef]
- Shiblee, M.; Kalra, P.K.; Chandra, B. Time series prediction with multilayer perceptron (MLP): A new generalized error based approach. In Proceedings of the Advances in Neuro-Information Processing, Berlin, Heidelberg, 10 July 2009; pp. 37–44. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Kamalov, F. Forecasting significant stock price changes using neural networks. Neural Comput. Appl. 2020, 32, 17655–17667. [Google Scholar] [CrossRef]
- Wang, Z.H.; Ruan, S.J.; Huang, T.Q.; Zhou, H.Y.; Zhang, S.H.; Wang, Y.; Wang, L.Y.; Huang, Z.; Liu, Y. A lightweight multi-layer perceptron for efficient multivariate time series forecasting. Knowl.-Based Syst. 2024, 288, 111463. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, Z.Y.; Jin, Y.F. State-of-the-art review of machine learning applications in constitutive modeling of soils. Arch. Comput. Methods Eng. 2021, 28, 3661–3686. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Yao, Y.; Rosasco, L.; Caponnetto, A. On early stopping in gradient descent learning. Constr. Approx. 2007, 26, 289–315. [Google Scholar] [CrossRef]
- API. Recommend Practice 2GEO Geotechnical and Foundation Design Considerations, 1st ed.; American Petroleum Institute: Washington, DC, USA, 2011. [Google Scholar]
- Jardine, R.; Chow, F.; Overy, R.; Standing, J. ICP Design Methods for Driven Piles in Sands and Clays; Thomas Telford: London, UK, 2005. [Google Scholar]
- Lehane, B.; Schneider, J.A.; Xu, X.T. The UWA-05 method for prediction of axial capacity of driven piles in sand. In Proceedings of the Frontiers in Offshore Geotechnics, Perth, Australia, 19–21 September 2005; pp. 683–689. [Google Scholar]
- Lehane, B.M.; Li, Y.; Williams, R. Shaft capacity of displacement piles in clay using the cone penetration test. J. Geotech. Geoenviron. Eng. 2013, 139, 253–266. [Google Scholar] [CrossRef]
- Schmertmann, J.H. Guidelines for Cone Penetration Test: Performance and Design; Federal Highway Administration: Washington, DC, USA, 1978.
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Kang, X.; Guo, J.; Song, B.; Cai, B.; Sun, H.; Zhang, Z. Interpretability for reliable, efficient, and self-cognitive DNNs: From theories to applications. Neurocomputing 2023, 545, 126267. [Google Scholar] [CrossRef]
- Lehane, B.M.; Gavin, K.G. Base resistance of jacked pipe piles in sand. J. Geotech. Geoenviron. Eng. 2001, 127, 473–480. [Google Scholar] [CrossRef]
- Duan, W.; Cai, G.; Liu, S.; Puppala, A.J.; Chen, R. In-situ evaluation of undrained shear strength from seismic piezocone penetration tests for soft marine clay in Jiangsu, China. Transp. Geotech. 2019, 20, 100253. [Google Scholar] [CrossRef]
- Duan, W.; Congress, S.S.C.; Cai, G.; Puppala, A.J.; Dong, X.; Du, Y. Empirical correlations of soil parameters based on piezocone penetration tests (CPTU) for Hong Kong-Zhuhai-Macau Bridge (HZMB) project. Transp. Geotech. 2021, 30, 100605. [Google Scholar] [CrossRef]
No. | Soil Type | d (m) | (kN/m3) | Dr (%) | φ (°) | cu (kPa) |
---|---|---|---|---|---|---|
1 | Mud | 2.4 | 6.5 | / | / | 26 |
2 | Silty clay | 7.6 | 7.0 | / | / | 31.3 |
3 | Silty clay with silty sand | 12.0 | 8.4 | / | / | 57.3 |
4 | Silty sand with silty clay | 16.5 | 9.5 | 35 | 31 | / |
5 | Silty clay with silty sand | 20.7 | 8.5 | / | / | 78.3 |
6 | Silty sand-1 | 21.9 | 9.5 | 30 | 30 | / |
7 | Silty sand-2 | 25.5 | 10.0 | 55 | 35.3 | / |
8 | Silty sand-3 | 41.3 | 10.6 | 65 | 36.3 | / |
9 | Silty sand-4 | 60.5 | 10.5 | 60 | 36.3 | / |
Hidden Size | Activation Function | Validation Split | Batch Size | Optimizer | Loss Function | Early Stopping Patience |
---|---|---|---|---|---|---|
3 × 64 | ReLU | 0.1 | 128 | Adam | MSE | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Shi, R.; Guan, Q.; Yang, Y. Prediction of Pile Running during Installation Using Deep Learning Method. J. Mar. Sci. Eng. 2024, 12, 1099. https://doi.org/10.3390/jmse12071099
He B, Shi R, Guan Q, Yang Y. Prediction of Pile Running during Installation Using Deep Learning Method. Journal of Marine Science and Engineering. 2024; 12(7):1099. https://doi.org/10.3390/jmse12071099
Chicago/Turabian StyleHe, Ben, Ruilong Shi, Qingzheng Guan, and Yitao Yang. 2024. "Prediction of Pile Running during Installation Using Deep Learning Method" Journal of Marine Science and Engineering 12, no. 7: 1099. https://doi.org/10.3390/jmse12071099
APA StyleHe, B., Shi, R., Guan, Q., & Yang, Y. (2024). Prediction of Pile Running during Installation Using Deep Learning Method. Journal of Marine Science and Engineering, 12(7), 1099. https://doi.org/10.3390/jmse12071099