Real-Time Infrared Sea–Sky Line Region Detection in Complex Environment Based on Deep Learning
Abstract
1. Introduction
2. Methods
2.1. Feature Extraction Network Based on ISRDM
2.2. Backbone Network Based on MOB-SP Module
2.3. SAMHead
2.4. Loss Function
3. Experiments and Discussion
3.1. Datasets
3.2. Training Details
3.3. Evaluation Metric
3.4. Ablation Experiments on InfML-HDD
3.5. Comparison and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Fan, S.; Liu, Y.; Li, Y.; Fei, C.; Liu, J.; Liu, B.; Dong, Y.; Liu, Z.; Zhao, X. A Review of Methods for Ship Detection with Electro-Optical Images in Marine Environments. J. Mar. Sci. Eng. 2021, 9, 1408. [Google Scholar] [CrossRef]
- Yu, Q.; Su, Y. Local Defogging Algorithm for the First Frame Image of Unmanned Surface Vehicles Based on a Radar-Photoelectric System. J. Mar. Sci. Eng. 2022, 10, 969. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Wu, X.; Liang, H.; Zheng, Z.; Zhu, C.; Liu, Y.; Sun, C.; Wang, C.; He, D. Analysis and Compensation of Installation Perpendicularity Error in Unmanned Surface Vehicle Electro-Optical Devices by Using Sea–Sky Line Images. J. Mar. Sci. Eng. 2023, 11, 863. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Liu, J.; Xie, S.; Luo, J. Real-Time Monocular Obstacle Detection Based on Horizon Line and Saliency Estimation for Unmanned Surface Vehicles. Mob. Netw. Appl. 2021, 26, 1372–1385. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Small Infrared Target Detection by Region-Adaptive Clutter Rejection for Sea-Based Infrared Search and Track. Sensors 2014, 14, 13210–13242. [Google Scholar] [CrossRef]
- Song, H.; Ren, H.; Song, Y.; Chang, S.; Zhao, Z. A Sea–Sky Line Detection Method Based on the RANSAC Algorithm in the Background of Infrared Sea–Land–Sky Images. J. Russ. Laser Res. 2021, 42, 318–327. [Google Scholar] [CrossRef]
- Longstaff, F.A.; Schwartz, E.S. Valuing American Options by Simulation: A Simple Least-Squares Approach. Rev. Financ. Stud. 2001, 14, 113–147. [Google Scholar] [CrossRef]
- Dong, L.; Ma, D.; Ma, D.; Xu, W. Fast Infrared Horizon Detection Algorithm Based on Gradient Directional Filtration. J. Opt. Soc. Am. A 2020, 37, 1795–1805. [Google Scholar] [CrossRef]
- Grompone von Gioi, R.; Jakubowicz, J.; Morel, J.-M.; Randall, G. LSD: A Fast Line Segment Detector with a False Detection Control. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732. [Google Scholar] [CrossRef]
- Lin, C.; Chen, W.; Zhou, H. Multi-Visual Feature Saliency Detection for Sea-Surface Targets through Improved Sea-Sky-Line Detection. J. Mar. Sci. Eng. 2020, 8, 799. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. MuSCoWERT: Multi-Scale Consistence of Weighted Edge Radon Transform for Horizon Detection in Maritime Images. J. Opt. Soc. Am. A 2016, 33, 2491–2500. [Google Scholar] [CrossRef]
- Praczyk, T. A Quick Algorithm for Horizon Line Detection in Marine Images. J. Mar. Sci. Technol. 2018, 23, 164–177. [Google Scholar] [CrossRef]
- Kumeechai, P.; Jiriwibhakorn, S. Effective Horizon Detection on Complex Seas Using Back Propagation Neural Network. In Proceedings of the 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Thailand, 10–13 July 2019; pp. 790–793. [Google Scholar]
- Fu, J.; Zhao, J.; Li, F. Infrared Sea-Sky Line Detection Utilizing Self-Adaptive Laplacian of Gaussian Filter and Visual-Saliency-Based Probabilistic Hough Transform. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7002605. [Google Scholar] [CrossRef]
- Özertem, K.A. A Fast Automatic Target Detection Method for Detecting Ships in Infrared Scenes. In Proceedings of the Automatic Target Recognition XXVI, Baltimore, MD, USA, 18–19 April 2016; Volume 9844, pp. 16–29. [Google Scholar]
- Li, F.; Zhang, J.; Sun, W.; Jin, J.; Li, L.; Dai, Y. Sea–Sky Line Detection Using Gray Variation Differences in the Time Domain for Unmanned Surface Vehicles. Signal Image Video Process. 2021, 15, 139–146. [Google Scholar] [CrossRef]
- Kong, X.; Liu, L.; Qian, Y.; Cui, M. Automatic Detection of Sea-Sky Horizon Line and Small Targets in Maritime Infrared Imagery. Infrared Phys. Technol. 2016, 76, 185–199. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Jeong, C.; Yang, H.S.; Moon, K. A Novel Approach for Detecting the Horizon Using a Convolutional Neural Network and Multi-Scale Edge Detection. Multidimens. Syst. Signal Process. 2019, 30, 1187–1204. [Google Scholar] [CrossRef]
- Mo, W.; Pei, J. Sea-Sky Line Detection in the Infrared Image Based on the Vertical Grayscale Distribution Feature. Vis. Comput. 2023, 39, 1915–1927. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, P.; Huang, L.; Wu, L. Sea-Sky-Line Detection Based on Improved YOLOv5 Algorithm. In Proceedings of the 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 17–19 December 2021; Volume 2, pp. 688–694. [Google Scholar]
- Jeong, C.Y.; Yang, H.S.; Moon, K. Fast Horizon Detection in Maritime Images Using Region-of-Interest. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718790753. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Hou, Q.; Zhang, L.; Cheng, M.-M.; Feng, J. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4002–4011. [Google Scholar]
- Wang, C.-Y.; Mark Liao, H.-Y.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Fu, J.; Li, F.; Zhao, J. Real-Time Infrared Horizon Detection in Maritime and Land Environments Based on Hyper-Laplace Filter and Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2023, 72, 5016513. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [Google Scholar] [CrossRef]
- Bloisi, D.D.; Iocchi, L.; Pennisi, A.; Tombolini, L. ARGOS-Venice Boat Classification. In Proceedings of the 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Karlsruhe, Germany, 25–28 August 2015; pp. 1–6. [Google Scholar]
- Hashmani, M.A.; Umair, M. A Novel Visual-Range Sea Image Dataset for Sea Horizon Line Detection in Changing Maritime Scenes. J. Mar. Sci. Eng. 2022, 10, 193. [Google Scholar] [CrossRef]
- Xin, Z.; Kong, S.; Wu, Y.; Zhan, G.; Yu, J. A Hierarchical Stabilization Control Method for a Three-Axis Gimbal Based on Sea–Sky-Line Detection. Sensors 2022, 22, 2587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, J.; Chen, J. Detection of Sea Surface Obstacle Based on Super-Pixel Probabilistic Graphical Model and Sea-Sky-Line. In Proceedings of the Eleventh International Conference on Machine Vision (ICMV 2018), Munich, Germany, 1–3 November 2018; Volume 11041, pp. 516–525. [Google Scholar]
- Yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on 15 January 2024).
- Yolov7. Available online: https://github.com/WongKinYiu/yolov7 (accessed on 21 December 2023).
Dataset | InfML-HDD | Singapore-NR | Mar-DCT |
---|---|---|---|
Image Source | Image | Video | Video |
Frames | 6055 | 13,162 | 7374 |
Image size | 384 × 288 | 1920 × 1080 | 704 × 576 |
Image type | Infrared range | Near-infrared range | Infrared range |
Shooting | Moving | Static | Static |
Time | Day/Night | Day | Night |
Image characteristics | Cloud edges and waves; Coastal mountains; Heavy fog and rain; Specular reflection | Large container ships near the sea–sky line; Sea waves and reflections | Coastal mountains; Low resolution and low contrast |
Modules | AP (%) | Params (M) | Acc (%) | FPS | ||
---|---|---|---|---|---|---|
MOB-SP | ISRDM | SAMHead | ||||
65.6 | 7.5 | 96.2 | 166.3 | |||
√ | 73.6 | 7.2 | 97.4 | 203.6 | ||
√ | √ | 73.2 | 6.0 | 97.2 | 241.1 | |
√ | √ | 81.2 | 7.6 | 98.6 | 186.7 | |
√ | √ | √ | 82.4 | 6.2 | 99.3 | 237.8 |
Algorithm | InfML-HDD | Singapore-NR | Mar-DCT | Params (M) | FPS | ITSI (ms) | |||
---|---|---|---|---|---|---|---|---|---|
AP (%) | Acc (%) | AP (%) | Acc (%) | AP (%) | Acc (%) | ||||
LSD [8] | 50.8 | 80.1 | 51.9 | 81.2 | 49.6 | 78.6 | - | 179.7 | 5.56 |
Edge-Hough [34] | 47.3 | 76.5 | 45.4 | 74.3 | 46.9 | 75.2 | - | 320.9 | 3.12 |
RANSAC [35] | 40.1 | 71.1 | 36.3 | 65.8 | 37.6 | 67.3 | - | 30.3 | 33.0 |
MuSCoWERT [11] | 54.3 | 84.9 | 52.1 | 82.3 | 52.4 | 82.6 | - | 103.1 | 9.70 |
YOLOv5s [36] | 65.6 | 96.2 | 66.4 | 96.4 | 68.1 | 95.6 | 7.5 | 166.3 | 6.01 |
YOLOv5m [36] | 71.9 | 97.3 | 70.7 | 96.6 | 71.3 | 96.1 | 21.2 | 148.2 | 6.75 |
YOLOv7-tiny [37] | 62.9 | 95.1 | 64.5 | 95.0 | 60.9 | 94.3 | 6.5 | 191.7 | 5.22 |
YOLOv7 [37] | 76.8 | 97.8 | 77.6 | 97.1 | 78.3 | 97.2 | 36.9 | 115.5 | 8.66 |
YOLOv5-MOBv2 [22] | 60.7 | 94.7 | 64.7 | 95.3 | 59.7 | 94.1 | 5.8 | 203.9 | 4.90 |
Proposed | 82.4 | 99.3 | 80.2 | 99.1 | 79.3 | 98.8 | 6.2 | 237.8 | 4.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, F.; Zhao, J.; Fu, J. Real-Time Infrared Sea–Sky Line Region Detection in Complex Environment Based on Deep Learning. J. Mar. Sci. Eng. 2024, 12, 1092. https://doi.org/10.3390/jmse12071092
Wang Y, Li F, Zhao J, Fu J. Real-Time Infrared Sea–Sky Line Region Detection in Complex Environment Based on Deep Learning. Journal of Marine Science and Engineering. 2024; 12(7):1092. https://doi.org/10.3390/jmse12071092
Chicago/Turabian StyleWang, Yongfei, Fan Li, Jianhui Zhao, and Jian Fu. 2024. "Real-Time Infrared Sea–Sky Line Region Detection in Complex Environment Based on Deep Learning" Journal of Marine Science and Engineering 12, no. 7: 1092. https://doi.org/10.3390/jmse12071092
APA StyleWang, Y., Li, F., Zhao, J., & Fu, J. (2024). Real-Time Infrared Sea–Sky Line Region Detection in Complex Environment Based on Deep Learning. Journal of Marine Science and Engineering, 12(7), 1092. https://doi.org/10.3390/jmse12071092