How to Achieve Comprehensive Carbon Emission Reduction in Ports? A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Literature Search
2.2. Literature Analysis
3. Renewable Energy Sources
3.1. Offshore Wind Power
3.2. Solar PV Power
3.3. Biofuels
3.4. Tidal Energy
4. Low-Carbon Fuels
4.1. Liquefied Natural Gas
4.2. Hydrogen
4.3. Ammonia
4.4. Liquefied Petroleum Gas
5. Technological Approaches
5.1. Microgrid
5.2. Energy Storage Systems
5.3. Cold Ironing
5.4. Carbon Capture
5.5. Digital Technologies
6. Optimization Strategies for Port Emission Reduction
6.1. Operation Optimization Based on Energy Awareness
6.2. Operation Optimization Based on Energy Efficiency
6.3. Operation Optimization Based on Price-Responsive Strategies
6.4. Operation Optimization Based on Carbon Tax
7. Discussion
- (1)
- Research on the selection of renewable energy sources suitable for ports.
- (2)
- Research on the utilization of low-carbon fuels.
- (3)
- Research on the application of emission reduction technological approaches.
- (4)
- Research on emission reduction optimization strategies.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutierrez-Romero, J.E.; Esteve-Pérez, J.; Zamora, B. Implementing Onshore Power Supply from renewable energy sources for requirements of ships at berth. Appl. Energy 2019, 255, 113883. [Google Scholar] [CrossRef]
- Di Ilio, G.; Di Giorgio, P.; Tribioli, L.; Bella, G.; Jannelli, E. Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics. Energy Convers. Manag. 2021, 243, 114423. [Google Scholar] [CrossRef]
- Mueller, N.; Westerby, M.; Nieuwenhuijsen, M. Health impact assessments of shipping and port-sourced air pollution on a global scale: A scoping literature review. Environ. Res. 2023, 216, 114460. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, N.B.; Othman, M.; Vasquez, J.C.; Guerrero, J.M.; Su, C.L. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1043–1048. [Google Scholar]
- Pham, V.V.; Hoang, A.T.; Do, H.C. Analysis and evaluation of database for the selection of propulsion systems for tankers. In Proceedings of the International Conference on Emerging Applications in Material Science and Technology: Iceamst 2020, Namakkal, India, 30–31 January 2020; AIP Publishing: Tokyo, Japan, 2020; Volume 2235. [Google Scholar] [CrossRef]
- Satır, T.; Doğan-Sağlamtimur, N. The protection of marine aquatic life: Green Port (EcoPort) model inspired by Green Port concept in selected ports from Turkey, Europe and the USA. Period. Eng. Nat. Sci. 2018, 6, 120–129. [Google Scholar] [CrossRef]
- Christodoulou, A.; Cullinane, K. Identifying the main opportunities and challenges from the implementation of a port energy management system: A SWOT/PESTLE analysis. Sustainability 2019, 11, 6046. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Q.; Wang, L.; Chen, Y.; Wang, J. A review of the port carbon emission sources and related emission reduction technical measures. Environ. Pollut. 2023, 320, 121000. [Google Scholar] [CrossRef]
- Hoang, A.T.; Foley, A.M.; Nižetić, S.; Huang, Z.; Ong, H.C.; Ölçer, A.I.; Nguyen, X.P. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. J. Clean. Prod. 2022, 355, 131772. [Google Scholar] [CrossRef]
- Alamoush, A.S.; Ballini, F.; Ölçer, A.I. Ports’ technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Mar. Pollut. Bull. 2020, 160, 111508. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y. Estimation methods and reduction strategies of port carbon emissions-what literatures say? Mar. Pollut. Bull. 2023, 195, 115451. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.S.; Kasturi, G.V.K. A STUDY ON PRACTICAL CHALLENGES OF IMPLEMENTATION: GREEN PORTS in India with special reference to Sustainable Growth: Comparative Analysis. J. Res. Adm. 2024, 6. Available online: http://journalra.org/index.php/jra/article/view/1203 (accessed on 10 March 2024).
- Yi, T.; Zhang, C. Scheduling optimization of a wind power-containing power system considering the integrated and flexible carbon capture power plant and P2G equipment under demand response and reward and punishment ladder-type carbon trading. Int. J. Greenh. Gas Control 2023, 128, 103955. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Lee, K.Y. The mutual benefits of renewables and carbon capture: Achieved by an artificial intelligent scheduling strategy. Energy Convers. Manag. 2021, 233, 113856. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Katinić, M.; Santa, R.; Marić, D. Wind turbine technology trends. Appl. Sci. 2022, 12, 8653. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Al-Akayshee, M. A reliable medium-voltage high-power conversion system for MWs wind turbines. IEEE Trans. Sustain. Energy 2019, 11, 859–867. [Google Scholar] [CrossRef]
- Parhamfar, M.; Sadeghkhani, I.; Adeli, A.M. Towards the application of renewable energy technologies in green ports: Technical and economic perspectives. IET Renew. Power Gener. 2023, 17, 3120–3132. [Google Scholar] [CrossRef]
- Sadek, I.; Elgohary, M. Assessment of renewable energy supply for green ports with a case study. Environ. Sci. Pollut. Res. 2020, 27, 5547–5558. [Google Scholar] [CrossRef]
- Raileanu, A.B.; Onea, F.; Rusu, E. Implementation of offshore wind turbines to reduce air pollution in coastal areas—Case study constanta harbour in the black sea. J. Mar. Sci. Eng. 2020, 8, 550. [Google Scholar] [CrossRef]
- Fossile, D.K.; Frej, E.A.; da Costa, S.E.G.; de Lima, E.P.; de Almeida, A.T. Selecting the most viable renewable energy source for Brazilian ports using the FITradeoff method. J. Clean. Prod. 2020, 260, 121107. [Google Scholar] [CrossRef]
- Junqueira, H.; Robaina, M.; Garrido, S.; Godina, R.; Matias, J.C. Viability of creating an offshore wind energy cluster: A case study. Appl. Sci. 2020, 11, 308. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Site selection of floating offshore wind through the levelised cost of energy: A case study in Ireland. Energy Convers. Manag. 2022, 266, 115802. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty. Omega 2021, 103, 102445. [Google Scholar] [CrossRef]
- Bakar, N.N.A.; Guerrero, J.M.; Vasquez, J.C.; Bazmohammadi, N.; Othman, M.; Rasmussen, B.D.; Al-Turki, Y.A. Optimal configuration and sizing of seaport microgrids including renewable energy and cold ironing—The Port of Aalborg case study. Energies 2022, 15, 431. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.; Park, N. Overview of possibilities of solar floating photovoltaic systems in the offshore industry. Energies 2021, 14, 6988. [Google Scholar] [CrossRef]
- Colarossi, D.; Principi, P. Optimal sizing of a photovoltaic/energy storage/cold ironing system: Life Cycle cost approach and environmental analysis. Energy Convers. Manag. 2023, 291, 117255. [Google Scholar] [CrossRef]
- Elnajjar, H.M.; Shehata, A.S.; Elbatran, A.H.A.; Shehadeh, M.F. Experimental and techno-economic feasibility analysis of renewable energy technologies for Jabel Ali Port in UAE. Energy Rep. 2021, 7, 116–136. [Google Scholar] [CrossRef]
- Yousuf, H.; Khokhar, M.Q.; Zahid, M.A.; Kim, J.; Kim, Y.; Cho, E.C.; Cho, Y.H.; Yi, J. A review on floating photovoltaic technology (FPVT). Curr. Photovolt. Res. 2020, 8, 67–78. [Google Scholar]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- El-Amary, N.H.; Balbaa, A.; Swief, R.A.; Abdel-Salam, T.S. A reconfigured whale optimization technique (RWOT) for renewable electrical energy optimal scheduling impact on sustainable development applied to Damietta seaport, Egypt. Energies 2018, 11, 535. [Google Scholar] [CrossRef]
- Dialyna, E.; Tsoutsos, T. Wave energy in the mediterranean sea: Resource assessment, deployed wecs and prospects. Energies 2021, 14, 4764. [Google Scholar] [CrossRef]
- Klopott, M.; Popek, M.; Urbanyi-Popiołek, I. Seaports’ role in ensuring the availability of alternative marine fuels—A multi-faceted analysis. Energies 2023, 16, 3055. [Google Scholar] [CrossRef]
- Pacheco, A.; Gorbeña, E.; Plomaritis, T.A.; Garel, E.; Gonçalves, J.M.S.; Bentes, L.; Monteiro, P.; Afonso, C.M.L.; Oliveira, F.; Soares, C.; et al. Deployment characterization of a floatable tidal energy converter on a tidal channel, Ria Formosa, Portugal. Energy 2018, 158, 89–104. [Google Scholar] [CrossRef]
- Ma, D.; Ma, W.; Hao, S.; Jin, S.; Qu, F. Ship’s response to low-sulfur regulations: From the perspective of route, speed and refueling strategy. Comput. Ind. Eng. 2021, 155, 107140. [Google Scholar]
- Aruna Coimbatore Meenakshi Sundaram; Karimi, I.A. Sustainability Analysis of an LNG Bunkering Protocol. ACS Sustain. Chem. Eng. 2023, 11, 13584–13593. [Google Scholar] [CrossRef]
- Driesch, P.; Horwat, K.; Maas, N.; Schramm, D. Evaluation of Alternative Propulsion Concepts for Mobile Machinery: A Modelling Approach using the Example on LNG-powered Port Handling Equipment. In Proceedings of the 10th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2020), Lieusaint, Paris, France, 8–10 July 2020; pp. 225–232. [Google Scholar]
- Weng, Y. The development of marine LNG infrastructure starts a good time. China Ship Surv. 2019, 2, 44–46. [Google Scholar]
- Peng, Y.; Zhao, X.; Zuo, T.; Wang, W.; Song, X. A systematic literature review on port LNG bunkering station. Transp. Res. Part D Transp. Environ. 2021, 91, 102704. [Google Scholar] [CrossRef]
- Kim, A.R.; Kwak, D.W.; Seo, Y.J. Evaluation of liquefied natural gas bunkering port selection. Int. J. Logist. Res. Appl. 2021, 24, 213–226. [Google Scholar] [CrossRef]
- Ha, M.H.; Park, H.; Seo, Y.J. Understanding core determinants in LNG bunkering port selection: Policy implications for the maritime industry. Mar. Policy 2023, 152, 105608. [Google Scholar] [CrossRef]
- Park, N.K.; Park, S.K. A study on the estimation of facilities in LNG bunkering terminal by simulation—Busan Port case. J. Mar. Sci. Eng. 2019, 7, 354. [Google Scholar] [CrossRef]
- Wang, X.; Ren, D.; Liang, H.; Song, Y.; Huo, H.; Wang, A.; Gao, Y.; Liu, J.; Gao, Y.; Wang, L.; et al. Ni crossover catalysis: Truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries. Energy Environ. Sci. 2023, 16, 1200–1209. [Google Scholar] [CrossRef]
- Kotowicz, J.; Jurczyk, M.; Węcel, D. The possibilities of cooperation between a hydrogen generator and a wind farm. Int. J. Hydrog. Energy 2021, 46, 7047–7059. [Google Scholar] [CrossRef]
- Chen, P.S.L.; Fan, H.; Enshaei, H.; Zhang, W.; Shi, W.; Abdussamie, N.; Miwa, T.; Qu, Z.; Yang, Z. A review on ports’ readiness to facilitate international hydrogen trade. Int. J. Hydrogen Energy 2023, 48, 17351–17369. [Google Scholar] [CrossRef]
- Sasiain, A.; Rechberger, K.; Spanlang, A.; Kofler, I.; Wolfmeir, H.; Harris, C.; Bürgler, T. Green hydrogen as decarbonization element for the steel industry. BHM Berg-Hüttenmännische Monatshefte 2020, 165, 232–236. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Clean fuel options with hydrogen for sea transportation: A life cycle approach. Int. J. Hydrogen Energy 2018, 43, 1179–1193. [Google Scholar] [CrossRef]
- Pivetta, D.; Dall’Armi, C.; Taccani, R. Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area. J. Mar. Sci. Eng. 2022, 10, 231. [Google Scholar] [CrossRef]
- Sifakis, N.; Vichos, E.; Smaragdakis, A.; Zoulias, E.; Tsoutsos, T. Introducing the cold-ironing technique and a hydrogen-based hybrid renewable energy system into ports. Int. J. Energy Res. 2022, 46, 20303–20323. [Google Scholar] [CrossRef]
- Vichos, E.; Sifakis, N.; Tsoutsos, T. Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports. Energy 2022, 241, 122878. [Google Scholar] [CrossRef]
- Hermesmann, M.; Müller, T.E. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ghandehariun, S.; Rosen, M.A. Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries. Energy 2020, 208, 118347. [Google Scholar] [CrossRef]
- Kar, S.K.; Sinha, A.S.K.; Bansal, R.; Shabani, B.; Harichandan, S. Overview of hydrogen economy in Australia. Wiley Interdiscip. Rev. Energy Environ. 2023, 12, e457. [Google Scholar] [CrossRef]
- Gerlitz, L.; Mildenstrey, E.; Prause, G. Ammonia as clean shipping fuel for the Baltic Sea region. Transp. Telecommun. J. 2022, 23, 102–112. [Google Scholar] [CrossRef]
- Liu, X. Distributionally robust optimization scheduling of port energy system considering hydrogen production and ammonia synthesis. Heliyon 2024, 10, e27615. [Google Scholar] [CrossRef]
- Deng, J.; Wang, X.; Wei, Z.; Wang, L.; Wang, C.; Chen, Z. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total Environ. 2021, 766, 144319. [Google Scholar] [CrossRef]
- Balci, G.; Phan TT, N.; Surucu-Balci, E.; Iris, Ç. A roadmap to alternative fuels for decarbonising shipping: The case of green ammonia. Res. Transp. Bus. Manag. 2024, 53, 101100. [Google Scholar] [CrossRef]
- Scholten, D.; Bosman, R. The strategic realities of the emerging energy game—Conclusion and reflection. Geopolit. Renew. 2018, 61, 307–328. [Google Scholar]
- Peng, P.; Cheng, S.; Lu, F. Characterizing the global liquefied petroleum gas trading community using mass vessel trajectory data. J. Clean. Prod. 2020, 252, 119883. [Google Scholar] [CrossRef]
- Bariha, N.; Ojha, D.K.; Srivastava, V.C.; Mishra, I.M. Fire and risk analysis during loading and unloading operation in liquefied petroleum gas (LPG) bottling plant. J. Loss Prev. Process Ind. 2023, 81, 104928. [Google Scholar] [CrossRef]
- Karapidakis, E.; Nikolaidis, E.; Moraitakis, G.; Georgakis, F.; Papadakis, M. Cold ironing feasibility study at the Heraklion Port. J. Phys. Conf. Ser. 2022, 2339, 012016. [Google Scholar]
- Mansoursamaei, M.; Moradi, M.; González-Ramírez, R.G.; Lalla-Ruiz, E. Machine learning for promoting environmental sustainability in ports. J. Adv. Transp. 2023, 2023, 2144733. [Google Scholar] [CrossRef]
- Rafaq, M.S.; Basit, B.A.; Mohammed, S.A.Q.; Jung, J.W. A comprehensive state-of-the-art review of power conditioning systems for energy storage systems: Topology and control applications in power systems. IET Renew. Power Gener. 2022, 16, 1971–1991. [Google Scholar] [CrossRef]
- Roy, A.; Auger, F.; Olivier, J.C.; Schaeffer, E.; Auvity, B. Design, sizing, and energy management of microgrids in harbor areas: A review. Energies 2020, 13, 5314. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Carli, R.; Dotoli, M. Robust optimal energy management of a residential microgrid under uncertainties on demand and renewable power generation. IEEE Trans. Autom. Sci. Eng. 2020, 18, 618–637. [Google Scholar] [CrossRef]
- Lu, J.; Hu, J.; Yu, J.; Cao, J. Two-stage robust scheduling and real-time load control of community microgrid with multiple uncertainties. Int. J. Electr. Power Energy Syst. 2024, 155, 109684. [Google Scholar] [CrossRef]
- Pham, T.H.; Prodan, I.; Genon-Catalot, D.; Lefèvre, L. Economic constrained optimization for power balancing in a DC microgrid: A multi-source elevator system application. Int. J. Electr. Power Energy Syst. 2020, 118, 105753. [Google Scholar] [CrossRef]
- Chen, T.; Cao, Y.; Qing, X.; Zhang, J.; Sun, Y.; Amaratunga, G.A. Multi-energy microgrid robust energy management with a novel decision-making strategy. Energy 2022, 230, 121840. [Google Scholar] [CrossRef]
- Binti Ahamad, N.B.; Su, C.L.; Zhaoxia, X.; Vasquez, J.C.; Guerrero, J.M.; Liao, C.H. Energy harvesting from harbor cranes with flywheel energy storage systems. IEEE Trans. Ind. Appl. 2019, 55, 3354–3364. [Google Scholar] [CrossRef]
- Khan, I.; Vijay, A.S.; Doolla, S. Nonlinear load harmonic mitigation strategies in microgrids: State of the art. IEEE Syst. J. 2021, 16, 4243–4255. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Kermani, M.; Shirdare, E.; Parise, G.; Bongiorno, M.; Martirano, L. A comprehensive technoeconomic solution for demand control in ports: Energy storage systems integration. IEEE Trans. Ind. Appl. 2022, 58, 1592–1601. [Google Scholar] [CrossRef]
- Worku, M.Y. Recent advances in energy storage systems for renewable source grid integration: A comprehensive review. Sustainability 2022, 14, 5985. [Google Scholar] [CrossRef]
- Phiri, S.F. Optimal Energy Control of a Rubber Tyred Gantry Crane with Potential Energy Recovery. Ph.D. Thesis, Central University of Technology, Bloemfontein, South Africa, 2021. [Google Scholar]
- Alasali, F.; Haben, S.; Holderbaum, W. Energy management systems for a network of electrified cranes with energy storage. Int. J. Electr. Power Energy Syst. 2019, 106, 210–222. [Google Scholar] [CrossRef]
- Ceraolo, M.; Lutzemberger, G.; Scarpelli, C.; Bonelli, G.P.; Piazza, T. Hybridisation of forklift trucks. IET Electr. Syst. Transp. 2020, 10, 116–123. [Google Scholar] [CrossRef]
- Shi, Z.; Fan, F.; Tai, N.; Qing, C.; Meng, Y.; Guo, R. Coordinated Operation of the Multiple Types of Energy Storage Systems in the Green-seaport Energy-logistics Integrated System. IEEE Trans. Ind. Appl. 2024, 1–11. [Google Scholar] [CrossRef]
- Zis, T.P.V. Prospects of cold ironing as an emissions reduction option. Transp. Res. Part A Policy Pract. 2019, 119, 82–95. [Google Scholar] [CrossRef]
- Xia, D.; He, J.; Chi, F.; Dou, Z.; Yang, Z.; Liu, C. Shore Power Optimal Scheduling Based on Gridding of Hybrid Energy Supply System. Sustainability 2022, 14, 16250. [Google Scholar] [CrossRef]
- Li, K.; Du, K. Research on onshore power supply system in port for ships. IOP Conf. Ser. Earth Environ. Sci. 2020, 558, 052022. [Google Scholar] [CrossRef]
- Yin, W.; Wu, S.; Zhao, X.; Shu, C.; Xiao, Y.; Ye, G.; Shi, W.; Feng, X. Shore power management for green shipping under international river transportation. Marit. Policy Manag. 2022, 49, 737–754. [Google Scholar] [CrossRef]
- Kumar, J.; Kumpulainen, L.; Kauhaniemi, K. Technical design aspects of harbour area grid for shore to ship power: State of the art and future solutions. Int. J. Electr. Power Energy Syst. 2019, 104, 840–852. [Google Scholar] [CrossRef]
- Radwan, M.E.; Chen, J.; Wan, Z.; Zheng, T.; Hua, C.; Huang, X. Critical barriers to the introduction of shore power supply for green port development: Case of Djibouti container terminals. Clean Technol. Environ. Policy 2019, 21, 1293–1306. [Google Scholar]
- Xu, L.; Di, Z.; Chen, J.; Shi, J.; Yang, C. Evolutionary game analysis on behavior strategies of multiple stakeholders in maritime shore power system. Ocean. Coast. Manag. 2021, 202, 105508. [Google Scholar]
- Song, Z.; Tang, W.; Zhao, R.; Zhang, G. Implications of government subsidies on shipping companies’ shore power usage strategies in port. Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102840. [Google Scholar] [CrossRef]
- Peng, Y.T.; Wang, Y.; Li, Z.C.; Sheng, D. Subsidy policy selection for shore power promotion: Subsidizing facility investment or price of shore power? Transp. Policy 2023, 140, 128–147. [Google Scholar] [CrossRef]
- Luo, C.; Zhou, Y.; Mu, M.; Zhang, Q.; Cao, Z. Subsidy, tax or green awareness: Government policy selection for promoting initial shore power usage and sustaining long-run use. J. Clean. Prod. 2024, 442, 140946. [Google Scholar] [CrossRef]
- Merkel, A.; Nyberg, E.; Ek, K.; Sjöstrand, H. Economics of shore power under different access pricing. Res. Transp. Econ. 2023, 101, 101330. [Google Scholar] [CrossRef]
- Emmanuel, K.; Mozakis, I.; Iliadis, I. Ultra-High Share of Renewable Energy Sources in Interconnected Island Systems. Eng. Proc. 2023, 41, 15. [Google Scholar] [CrossRef]
- Bakar, N.N.A.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Electrification of onshore power systems in maritime transportation towards decarbonization of ports: A review of the cold ironing technology. Renew. Sustain. Energy Rev. 2023, 178, 113243. [Google Scholar] [CrossRef]
- Seo, K.; Retnanto, A.P.; Martorell, J.L.; Edgar, T.F.; Stadtherr, M.A.; Baldea, M. Simultaneous design and operational optimization for flexible carbon capture process using ionic liquids. Comput. Chem. Eng. 2023, 178, 108344. [Google Scholar] [CrossRef]
- Shan, Q.; Song, J.; Xu, Q.; Xiao, G.; Yu, F. Polymorphic Distributed Energy Management for Low-Carbon Port Microgrid With Carbon Capture and Carbon Storage Devices. Front. Energy Res. 2022, 10, 951192. [Google Scholar] [CrossRef]
- Song, J.; Shan, Q.; Zou, T.; Hu, J.; Teng, F. Distributed Energy Management for Zero-Carbon Port Microgrid. Int. Trans. Electr. Energy Syst. 2022, 2022, 2752802. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Y.; Shan, Q.; Li, T. Towards Lower Carbon Emissions: A Distributed Energy Management Strategy-Based Multi-Objective Optimization for the Seaport Integrated Energy System. J. Mar. Sci. Eng. 2023, 11, 681. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.; Wang, L.; Chen, J.; Lu, Y. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges. Appl. Energy 2019, 239, 876–897. [Google Scholar] [CrossRef]
- Al-Hamed, K.H.M.; Dincer, I. Analysis and economic evaluation of a unique carbon capturing system with ammonia for producing ammonium bicarbonate. Energy Convers. Manag. 2022, 252, 115062. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, C.; Zhang, J.; Chen, Z.; Liu, M.; Aziz, F.; Kurniawan, T.A.; Yap, P.S. Digitalization and innovation in green ports: A review of current issues, contributions and the way forward in promoting sustainable ports and maritime logistics. Sci. Total Environ. 2023, 912, 169075. [Google Scholar] [CrossRef]
- Gerrero-Molina, M.I.; Vásquez-Suárez, Y.A.; Valdés-Mosquera, D.M. Smart, Green, and Sustainable: Unveiling Technological Trajectories in Maritime Port Operations. IEEE Access 2024, 12, 47713–47723. [Google Scholar] [CrossRef]
- Surucu-Balci, E.; Iris, Ç.; Balci, G. Digital information in maritime supply chains with blockchain and cloud platforms: Supply chain capabilities, barriers, and research opportunities. Technol. Forecast. Soc. Chang. 2024, 198, 122978. [Google Scholar] [CrossRef]
- Jimenez, V.J.; Kim, H.; Munim, Z.H. A review of ship energy efficiency research and directions towards emission reduction in the maritime industry. J. Clean. Prod. 2022, 366, 132888. [Google Scholar] [CrossRef]
- de la Peña Zarzuelo, I.; Soeane, M.J.F.; Bermúdez, B.L. Industry 4.0 in the port and maritime industry: A literature review. J. Ind. Inf. Integr. 2020, 20, 100173. [Google Scholar] [CrossRef]
- Li, K.; Gharehgozli, A.; Lee, J.Y. Smart technologies and port operations: Optimal adoption strategy with network externality consideration. Comput. Ind. Eng. 2023, 184, 109557. [Google Scholar] [CrossRef]
- Holly, S.; Nieße, A.; Tröschel, M.; Hammer, L.; Franzius, C.; Dmitriyev, V.; Dorfner, J.; Veith, E.M.; Harnischmacher, C.; Greve, M.; et al. Flexibility management and provision of balancing services with battery-electric automated guided vehicles in the Hamburg container terminal Altenwerder. Energy Inform. 2020, 3, 26. [Google Scholar] [CrossRef]
- Babel, M.; Gramlich, V.; Körner, M.F.; Sedlmeir, J.; Strüker, J.; Zwede, T. Enabling end-to-end digital carbon emission tracing with shielded NFTs. Energy Inform. 2022, 5 (Suppl. S1), 27. [Google Scholar] [CrossRef]
- Anwar, M.; Henesey, L.; Casalicchio, E. Digitalization in container terminal logistics: A literature review. In Proceedings of the 27th Annual Conference of International Association of Maritime Economists, Athens, Greece, 25–28 June 2019; pp. 1–25. [Google Scholar]
- Kurniawan, T.A.; Othman, M.H.D.; Liang, X.; Goh, H.H.; Gikas, P.; Kusworo, T.D.; Anouzla, A.; Chew, K.W. Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability. J. Environ. Manag. 2023, 338, 117765. [Google Scholar] [CrossRef]
- Filom, S.; Amiri, A.M.; Razavi, S. Applications of machine learning methods in port operations–A systematic literature review. Transp. Res. Part E Logist. Transp. Rev. 2022, 161, 102722. [Google Scholar] [CrossRef]
- Tawfik, M.; Shehata, A.S.; Hassan, A.A.; Kotb, M.A. Introducing Optimal Energy Hub Approach in Smart Green Ports based on Machine Learning Methodology. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, C. An almost robust optimization model for integrated berth allocation and quay crane assignment problem. Omega 2021, 104, 102455. [Google Scholar] [CrossRef]
- Li, H.; Li, X. A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy. Mathematics 2022, 10, 4705. [Google Scholar] [CrossRef]
- Kizilay, D.; Eliiyi, D.T. A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals. Flex. Serv. Manuf. J. 2021, 33, 1–42. [Google Scholar] [CrossRef]
- Zajac, S.; Huber, S. Objectives and methods in multi-objective routing problems: A survey and classification scheme. Eur. J. Oper. Res. 2021, 290, 1–25. [Google Scholar] [CrossRef]
- Karakas, S.; Kirmizi, M.; Kocaoglu, B. Yard block assignment, internal truck operations, and berth allocation in container terminals: Introducing carbon-footprint minimisation objectives. Marit. Econ. Logist. 2021, 23, 750–777. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, M.; Wang, Z.; Xiao, Y. A Genetic Algorithm for Integrated Scheduling of Container Handing Systems at Container Terminals from a Low-Carbon Operations Perspective. Sustainability 2023, 15, 6035. [Google Scholar] [CrossRef]
- Niu, Y.; Yu, F.; Yao, H.; Yang, Y. Multi-equipment coordinated scheduling strategy of U-shaped automated container terminal considering energy consumption. Comput. Ind. Eng. 2022, 174, 108804. [Google Scholar] [CrossRef]
- Fang, S.; Wang, C.; Liao, R.; Zhao, C. Optimal power scheduling of seaport microgrids with flexible logistic loads. IET Renew. Power Gener. 2022, 16, 2711–2720. [Google Scholar] [CrossRef]
- Geerlings, H.; Heij, R.; van Duin, R. Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals. J. Shipp. Trade 2018, 3, 3. [Google Scholar] [CrossRef]
- Tang, G.; Qin, M.; Zhao, Z.; Yu, J.; Shen, C. Performance of peak shaving policies for quay cranes at container terminals with double cycling. Simul. Model. Pract. Theory 2020, 104, 102129. [Google Scholar] [CrossRef]
- Tziovani, L.; Hadjidemetriou, L.; Charalampous, C.; Tziakouri, M.; Timotheou, S.; Kyriakides, E. Energy management and control of a flywheel storage system for peak shaving applications. IEEE Trans. Smart Grid 2021, 12, 4195–4207. [Google Scholar] [CrossRef]
- Xin, J.; Wei, L.; D’Ariano, A.; Zhang, F.; Negenborn, R. Flexible time–space network formulation and hybrid metaheuristic for conflict-free and energy-efficient path planning of automated guided vehicles. J. Clean. Prod. 2023, 398, 136472. [Google Scholar] [CrossRef]
- van Duin, J.H.R.R.; Geerlings, H.H.; Verbraeck, A.A.; Nafde, T.T. Cooling down: A simulation approach to reduce energy peaks of reefers at terminals. J. Clean. Prod. 2018, 193, 72–86. [Google Scholar] [CrossRef]
- Kusakana, K. Optimal energy management of a retrofitted Rubber Tyred Gantry Crane with energy recovery capabilities. J. Energy Storage 2021, 42, 103050. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Chu, F.; Yu, J. An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. Int. J. Prod. Res. 2020, 58, 2283–2314. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, X. Tariff-driven demand side management of green ship. Sol. Energy 2018, 170, 991–1000. [Google Scholar] [CrossRef]
- Zhai, J.; Wu, X.; Zhu, S.; Yang, B.; Liu, H. Optimization of integrated energy system considering photovoltaic uncertainty and multi-energy network. IEEE Access 2020, 8, 141558–141568. [Google Scholar] [CrossRef]
- Li, N.; Chen, G.; Govindan, K.; Jin, Z. Disruption management for truck appointment system at a container terminal: A green initiative. Transp. Res. Part D Transp. Environ. 2018, 61, 261–273. [Google Scholar] [CrossRef]
- Yu, J.; Voß, S.; Song, X. Multi-objective optimization of daily use of shore side electricity integrated with quayside operation. J. Clean. Prod. 2022, 351, 131406. [Google Scholar] [CrossRef]
- Qiu, J.; Tao, Y.; Lai, S.; Zhao, J. Pricing strategy of cold ironing services for all-electric ships based on carbon integrated electricity price. IEEE Trans. Sustain. Energy 2022, 13, 1553–1565. [Google Scholar] [CrossRef]
- Chargui, K.; Zouadi, T.; Sreedharan, V.R.; El Fallahi, A.; Reghioui, M. A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency. Omega 2023, 118, 102868. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, Q.; Li, Y. Integrated operations planning in highly electrified container terminals considering time-of-use tariffs. Transp. Res. Part E Logist. Transp. Rev. 2023, 171, 103034. [Google Scholar] [CrossRef]
- Wang, T.; Du, Y.; Fang, D.; Li, Z.C. Berth allocation and quay crane assignment for the trade-off between service efficiency and operating cost considering carbon emission taxation. Transp. Sci. 2020, 54, 1307–1331. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Meng, Q. Joint berth allocation and quay crane assignment under different carbon taxation policies. Transp. Res. Part B: Methodol. 2018, 117, 18–36. [Google Scholar] [CrossRef]
- Song, J.; Xu, C.; Wang, C. Impacts of the carbon tax on green shipping supply chain under the port competition. Expert Syst. 2023, 41, e13229. [Google Scholar] [CrossRef]
- Spengler, T.; Wilmsmeier, G. Sustainable performance and benchmarking in container terminals—The energy dimension. In Green Ports; Elsevier: Amsterdam, The Netherlands, 2019; pp. 125–154. [Google Scholar]
- Zeng, Y.; Yuan, X.; Hou, B. Analysis of Carbon Emission Reduction at the Port of Integrated Logistics: The Port of Shanghai Case Study. Sustainability 2023, 15, 10914. [Google Scholar] [CrossRef]
- Deng, G.; Chen, J.; Liu, Q. Influence mechanism and evolutionary game of environmental regulation on green port construction. Sustainability 2022, 14, 2930. [Google Scholar] [CrossRef]
- Sim, J. A carbon emission evaluation model for a container terminal. J. Clean. Prod. 2018, 186, 526–533. [Google Scholar] [CrossRef]
- Pan, X.; Li, M.; Wang, M.; Zong, T.; Song, M. The effects of a Smart Logistics policy on carbon emissions in China: A difference-in-differences analysis. Transp. Res. Part E Logist. Transp. Rev. 2020, 137, 101939. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, W.; Gu, Y. A system dynamics model of port hinterland intermodal transport: A case study of Guangdong-Hong Kong-Macao Greater Bay Area under different carbon taxation policies. Res. Transp. Bus. Manag. 2023, 49, 100987. [Google Scholar] [CrossRef]
- Jiang, M.; Feng, J.; Zhou, J.; Ma, F.; Wu, G.; Zhang, Y. Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost. Sustainability 2023, 15, 5018. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Y.; Liu, Z.; Lu, B. Analysis on Energy Conservation and Emission Reduction Efficiency and Influencing Factors for Ports around Bohai in China under the Low Carbon Target. Sustainability 2022, 14, 14765. [Google Scholar] [CrossRef]
- Zhuge, D.; Wang, S.; Wang, D.Z.W. A joint liner ship path, speed and deployment problem under emission reduction measures. Transp. Res. Part B Methodol. 2021, 144, 155–173. [Google Scholar] [CrossRef]
- Lin, S.; Zhen, L.; Wang, W.; Tan, Z. Green berth and yard space allocation under carbon tax policy in tidal ports. Marit. Policy Manag. 2023, 50, 1080–1101. [Google Scholar] [CrossRef]
- Xu, Y. Multi-objective optimization of joint scheduling of berth and quay crane under green ports. Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023). SPIE 2024, 13064, 190–197. [Google Scholar]
Energy Type | Advantages | Development Challenges | Port Applications | References |
---|---|---|---|---|
Wind Power | 1. Enormous energy production potential; 2. Highly clean energy; 3. Mature technology. | 1. Wind speed, geological structure, and transmission network conditions need to be met for wind farm locations; 2. High initial investment for construction; 3. Regular maintenance is required. | Danish ports, the Port of Alexandria, Gothenburg Port in Sweden, Genoa Port in Italy, and Tianjin Port in China | [16,17,18,19,20,21,22,23] |
Photovoltaic | 1. The efficiency of photovoltaic power generation is high; 2. Can bring significant economic benefits; 3. Highly clean energy. | 1. Electricity can only be generated during the day; 2. Efficiency is influenced by weather and season; 3. The lifespan of PV modules is affected by extreme weather conditions. | Long Beach Port in the USA, Jurong Port in Singapore, Port of Zeebrugge in Belgium, Gothenburg Port in Sweden, Port of Marseille in France, and Auckland Port in New Zealand | [24,25,26,27,28,29] |
Biofuels | 1. It has a smaller carbon footprint than traditional fossil fuels; 2. Could greatly reduce the construction of port energy-related infrastructure; 3. Blending with other fuels can further reduce carbon emissions. | 1. Significant differences exist in emissions, costs, and applicability; 2. Inherent risks in development. | Port of Rotterdam, Helsinki Port in Finland, and Genoa Port in Italy | [30,31,32,33] |
Tidal Energy | 1. Infinite and sustainable energy source; 2. Can reduce coastal areas’ demand for fossil fuels. | 1. Not matured in terms of technology; 2. Tidal energy conversion efficiency is still at a low level; 3. High initial investment and operating costs. | South Korea, Scotland, tidal barrages in France, and Gladstone Port in Australia | [34,35] |
Energy Type | Advantages | Development Challenges | Port Applications | References |
---|---|---|---|---|
Liquefied natural gas (LNG) | 1. Helps ships achieve emission reduction targets. 2. Can enhance the competitiveness of the ports. | 1. Various refueling methods affect the overall layout of the port. 2. Higher requirements for safety in port facilities and services. | German shipping company Hapag-Lloyd and China Ocean Shipping Group | [36,37,38,39,40,41,42,43] |
Hydrogen | 1. Widely recognized as a clean fuel. 2. Assists nearby factories in emission reduction. | 1. Chemical properties of hydrogen increase the complexity of overall port layout. 2. Limited technological advancement in hydrogen production. 3. Current management regulations regarding hydrogen are incomplete. | Qingdao Port in China, Port of Yokohama in Japan, Auckland Port in New Zealand, Port of Antwerp in Belgium, Port of Rotterdam in the Netherlands, and Port of Los Angeles and Long Beach Port in the USA | [44,45,46,47,48,49,50,51,52,53] |
Ammonia (NH3) | 1. Has good advantages in handling and storage. 2. Can serve as a medium for hydrogen storage and transportation. 3. Ammonia primarily produces water and nitrogen during combustion, making it highly clean. | 1. Both construction of ammonia terminals and storage are very expensive. 2. Ammonia is highly toxic to humans and marine organisms. 3. Current laws and regulations regarding ammonia still need improvement. | Port of Halden, Port of Bonifacio, and Port of Townsville are already planning green ammonia plants | [54,55,56,57,58] |
Liquefied petroleum gas (LPG) | 1. A clean and low-carbon energy source. 2. Used as an alternative fuel for internal combustion engines and vehicles. | 1. Transportation of LPG in tank trailers carries certain risks. 2. Large-scale release of LPG can cause destructive explosions. | Europe, United States, China, and India are the countries and regions with the highest usage of LPG | [59,60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zeng, Q.; Wang, L. How to Achieve Comprehensive Carbon Emission Reduction in Ports? A Systematic Review. J. Mar. Sci. Eng. 2024, 12, 715. https://doi.org/10.3390/jmse12050715
Zhang L, Zeng Q, Wang L. How to Achieve Comprehensive Carbon Emission Reduction in Ports? A Systematic Review. Journal of Marine Science and Engineering. 2024; 12(5):715. https://doi.org/10.3390/jmse12050715
Chicago/Turabian StyleZhang, Liping, Qingcheng Zeng, and Liang Wang. 2024. "How to Achieve Comprehensive Carbon Emission Reduction in Ports? A Systematic Review" Journal of Marine Science and Engineering 12, no. 5: 715. https://doi.org/10.3390/jmse12050715
APA StyleZhang, L., Zeng, Q., & Wang, L. (2024). How to Achieve Comprehensive Carbon Emission Reduction in Ports? A Systematic Review. Journal of Marine Science and Engineering, 12(5), 715. https://doi.org/10.3390/jmse12050715