Fast Ray-Tracing-Based Precise Localization for Internet of Underwater Things without Prior Acknowledgment of Target Depth
Abstract
:1. Introduction
- To accurately localize underwater targets without knowing depth information, we propose an IRTUL method that could accurately locate targets without prior depth information.
- To demonstrate the feasibility of fast ray tracing, we derive the signal path as a function of initial grazing angle, then prove the executability of fast ray tracing.
- To accelerate the ray tracing process, we propose an SVP simplification method, which reduces the computational cost of ray tracing.
2. Related Works
3. Iterative Ray-Tracing-Based Acoustic Localization for IoUT
3.1. System Model
3.1.1. Sensor Node Localization
3.1.2. Non-Cooperative Node Localization
3.2. IRTUL for Target without Depth Information
3.3. Fast Achievement of Iterative Ray Tracing Localization
3.3.1. Feasibility Analysis of Fast Ray Tracing
Simplification of the SVP
Optimization Searching of Signal Grazing Angle
3.3.2. Fast Algorithm of IRTUL
Algorithm 1 Fast IRTUL Algorithm. |
|
4. Experiment Results
4.1. Parameter Settings
4.2. Simulation Results
4.2.1. Accuracy Performance
4.2.2. Efficiency Performance
4.2.3. Evaluation of ITRUL with Ocean Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, H.P.; Diamant, R.; Seah, W.K.G.; Waldmeyer, M. A survey of techniques and challenges in underwater localization. Ocean Eng. 2011, 38, 1663–1676. [Google Scholar] [CrossRef]
- Qu, F.; Wang, S.; Wu, Z.; Liu, Z. A Survey of Ranging Algorithms and Localization Schemes in Underwater Acoustic Sensor Network. Chin. Commun. 2016, 13, 66–81. [Google Scholar]
- Junhai, L.; Liying, F.; Shan, W.; Xueting, Y. Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks. Sensors 2018, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yang, Y.; Wang, Z.; Chen, Y. Localization Algorithm for Underwater Sensor Network: A Review. IEEE Internet Things J. 2021, 8, 13126–13144. [Google Scholar] [CrossRef]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics: Chapter 1; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; pp. 3–4. [Google Scholar]
- Cheng, X.; Shu, H.; Liang, Q.; Du, D.H.C. Silent Positioning in Underwater Acoustic Sensor Networks. IEEE Trans. Veh. Technol. 2008, 57, 1756–1766. [Google Scholar] [CrossRef]
- Cheng, W.; Thaeler, A.; Cheng, X.; Liu, F.; Lu, X.; Lu, Z. Time-Synchronization Free Localization in Large Scale Underwater Acoustic Sensor Networks. In Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems Workshops, Montreal, QC, Canada, 22–26 June 2009; pp. 80–87. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.; Zhong, Z.; Poor, H.V. Asymmetrical Round Trip Based Synchronization-Free Localization in Large-Scale Underwater Sensor Networks. IEEE Trans. Wirel. Commun. 2010, 9, 3532–3542. [Google Scholar] [CrossRef]
- Carroll, P.; Mahmood, K.; Zhou, S.; Zhou, H.; Xu, X.; Cui, J.H. On-Demand Asynchronous Localization for Underwater Sensor Networks. IEEE Trans. Signal Process. 2014, 62, 3337–3348. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, X.; Luo, X.; Wang, Y.; Chen, C.; Guan, X. Asynchronous Localization With Mobility Prediction for Underwater Acoustic Sensor Networks. IEEE Trans. Veh. Technol. 2018, 67, 2543–2556. [Google Scholar] [CrossRef]
- Berger, C.R.; Wang, Z.; Huang, J.; Zhou, S. Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 2010, 48, 164–174. [Google Scholar] [CrossRef]
- Gwun, B.C.; Han, J.W.; Kim, K.M.; Jung, J.W. MIMO underwater communication with sparse channel estimation. In Proceedings of the 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), Da Nang, Vietnam, 2–5 July 2013; pp. 32–36. [Google Scholar] [CrossRef]
- Tüchler, M.; Singer, A.C. Turbo Equalization: An Overview. IEEE Trans. Inf. Theory 2011, 57, 920–952. [Google Scholar] [CrossRef]
- Jung, J.; Kim, K. Optimizing of Iterative Turbo Equalizer for Underwater Sensor Communication. Int. J. Distrib. Sens. Netw. 2013, 2013, 129781. [Google Scholar] [CrossRef]
- Mahmutoglu, Y.; Turk, K.; Tugcu, E. Particle swarm optimization algorithm based decision feedback equalizer for underwater acoustic communication. In Proceedings of the 2016 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna, Austria, 27–29 June 2016; pp. 153–156. [Google Scholar] [CrossRef]
- Liu, K.W. Detection of Underwater Sound Source Using Time Reversal Mirror. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Teymorian, A.Y.; Cheng, W.; Ma, L.; Cheng, X.; Lu, X.; Lu, Z. 3D Underwater Sensor Network Localization. IEEE Trans. Mob. Comput. 2009, 8, 1610–1621. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, J.H.; Zhou, S. Efficient localization for large-scale underwater sensor networks. Ad Hoc Netw. 2010, 8, 267–279. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Liu, M.; Fan, Z. A top-down positioning scheme for underwater wireless sensor networks. Sci. China Inf. Sci. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, Y.R. AoA assisted localization for underwater Ad-Hoc sensor networks. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Diamant, R.; Lampe, L. Underwater Localization with Time-Synchronization and Propagation Speed Uncertainties. IEEE Trans. Mob. Comput. 2013, 12, 1257–1269. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Cui, J.H.; Zhou, S.; Yang, B. A Joint Time Synchronization and Localization Design for Mobile Underwater Sensor Networks. IEEE Trans. Mob. Comput. 2016, 15, 530–543. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.; Shin, H.S.; Xu, X. Efficient Underwater Acoustical Localization Method Based On Time Difference and Bearing Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 8501316. [Google Scholar] [CrossRef]
- Youngberg, J.W. A Novel Method for Extending GPS to Underwater Applications. Navigation 1991, 38, 263–271. [Google Scholar] [CrossRef]
- Erol-Kantarci, M.; Mouftah, H.T.; Oktug, S. A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun. Surv. Tutor. 2011, 13, 487–502. [Google Scholar] [CrossRef]
- Niculescu, D.; Nath, B. Ad hoc positioning system (APS). In Proceedings of the GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270), San Antonio, TX, USA, 25–29 November 2001; Volume 5, pp. 2926–2931. [Google Scholar] [CrossRef]
- Niculescu, D.; Nath, B. DV based positioning in ad hoc networks. Telecommun. Syst. Model. Anal. Des. Manag. 2003, 22, 267–280. [Google Scholar] [CrossRef]
- He, T.; Huang, C.; Blum, B.M.; Stankovic, J.A.; Abdelzaher, T.F. Range-free localization schemes for large scale sensor networks. In Proceedings of the Ninth Annual International Conference on Mobile Computing and Networking, MOBICOM 2003, San Diego, CA, USA, 14–19 September 2003; pp. 81–95. [Google Scholar]
- Wong, S.Y.; Lim, J.G.; Rao, S.; Seah, W. Multihop localization with density and path length awareness in non-uniform wireless sensor networks. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; Volume 4, pp. 2551–2555. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Seah, W. An Area Localization Scheme for Underwater Sensor Networks. In Proceedings of the OCEANS 2006-Asia Pacific, Singapore, 16–19 May 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K. Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks. Sensors 2012, 12, 5486–5501. [Google Scholar] [CrossRef] [PubMed]
- Zandi, R.; Kamarei, M.; Amiri, H.; Yaghoubi, F. Underwater Sensor Network Positioning Using an AUV Moving on a Random Waypoint Path. IETE J. Res. 2015, 61, 693–698. [Google Scholar] [CrossRef]
- Zhu, S.; Jin, N.; Wang, L.; Yang, S.; Zheng, X.; Zhu, M.; Sun, L. Error tolerant dual-hydrophone localization in underwater sensor networks. In Proceedings of the OCEANS 2016, Shanghai, China, 19–23 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Erol, M.; Vieira, L.F.M.; Gerla, M. Localization with Dive’N’Rise (DNR) Beacons for Underwater Acoustic Sensor Networks. In Proceedings of the 2nd Workshop on Underwater Networks, New York, NY, USA, 14 September 2007; WUWNet ’07. pp. 97–100. [Google Scholar] [CrossRef]
- Isik, M.T.; Akan, O.B. A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 4457–4463. [Google Scholar] [CrossRef]
- Kurniawan, A.; Ferng, H.W. Projection-based localization for underwater sensor networks with consideration of layers. In Proceedings of the IEEE 2013 Tencon-Spring, Sydney, NSW, Australia, 17–19 April 2013; pp. 425–429. [Google Scholar] [CrossRef]
- Uddin, M.Y.S. Low-overhead range-based 3D localization technique for underwater sensor networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Alexandri, T.; Walter, M.; Diamant, R. A Time Difference of Arrival Based Target Motion Analysis for Localization of Underwater Vehicles. IEEE Trans. Veh. Technol. 2022, 71, 326–338. [Google Scholar] [CrossRef]
- Weiss, A.; Arikan, T.; Vishnu, H.; Deane, G.B.; Singer, A.C.; Wornell, G.W. A Semi-Blind Method for Localization of Underwater Acoustic Sources. IEEE Trans. Signal Process. 2022, 70, 3090–3106. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, C.; Zheng, C.; Zhao, C.; Wang, Y. High-Precision Underwater Acoustical Localization of the Black Box Based on an Improved TDOA Algorithm. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1317–1321. [Google Scholar] [CrossRef]
- Sun, S.; Liu, T.; Wang, Y.; Zhang, G.; Liu, K.; Wang, Y. High-Rate Underwater Acoustic Localization Based on the Decision Tree. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4204912. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Qi, B.; Hao, Y. Long Baseline Acoustic Localization Based on Track-Before-Detect in Complex Underwater Environments. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4205214. [Google Scholar] [CrossRef]
- Ramezani, H.; Jamali-Rad, H.; Leus, G. Target Localization and Tracking for an Isogradient Sound Speed Profile. IEEE Trans. Signal Process. 2013, 61, 1434–1446. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Zheng, L.; Wu, J.; Zhuang, Z. Joint Synchronization and Localization for Underwater Sensor Networks Considering Stratification Effect. IEEE Access 2017, 5, 26932–26943. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, Y.; Jiang, T. Underwater Anchor-AUV Localization Geometries With an Isogradient Sound Speed Profile: A CRLB-Based Optimality Analysis. IEEE Trans. Wirel. Commun. 2018, 17, 8228–8238. [Google Scholar] [CrossRef]
- Gong, Z.; Li, C.; Jiang, F. A Machine Learning-Based Approach for Auto-Detection and Localization of Targets in Underwater Acoustic Array Networks. IEEE Trans. Veh. Technol. 2020, 69, 15857–15866. [Google Scholar] [CrossRef]
- Yan, J.; Yi, M.; Yang, X.; Luo, X.; Guan, X. Broad-Learning-Based Localization for Underwater Sensor Networks with Stratification Compensation. IEEE Internet Things J. 2023, 10, 13123–13137. [Google Scholar] [CrossRef]
- Wang, D.; Shang, E. Underwater Acoustics (Second Edition): Chapter 3; China Science Publishing and Media Ltd.: Beijing, China, 2013; pp. 105–106. [Google Scholar]
- Huang, W.; Liu, M.; Li, D.; Cen, Y.; Wang, S. A Stratified Linear Sound Speed Profile Simplification Method for Localization Correction. In Proceedings of the 14th International Conference on Underwater Networks & Systems, Atlanta, GA, USA, 23–25 October 2019. WUWNet ’19. [Google Scholar] [CrossRef]
Item | Value |
---|---|
simplified SVP | |
communication range | 4500 m |
area square | 10 km × 10 km |
depth | 3 km |
surface buoys | 25 |
anchor nodes | 25 |
target nodes to be located | 200 |
mean error (time) | 0 |
standard deviation error (time) | 0.003 s |
number of simplification layers | 7 |
threshold of depth tuning step | 0.2 m |
initial depth tuning direction | |
threshold of signal propagation time | 10 s |
threshold of horizontal propagation distance | 0.1 m |
initial depth step | 2 m |
Constant Speed (m) | Original SVP (m) | x (m) | y (m) | z (m) | SVP by DM-EICPS | x (m) | y (m) | z (m) |
---|---|---|---|---|---|---|---|---|
…… | ||||||||
3.756 | 4.173 | 1.87 | 0.07 | 1.88 | 4.173 | 3.36 | 1.32 | 1.97 |
5.426 | 1.386 | 5.01 | 3.23 | 0.38 | 1.386 | 3.57 | 2.61 | 0.52 |
6.041 | 3.612 | 0.49 | 0.15 | 2.97 | 3.612 | 0.11 | 0.41 | 2.27 |
2.843 | 7.096 | 1.62 | 2.56 | 4.96 | 7.096 | 3.64 | 3.00 | 5.27 |
8.723 | 3.112 | 0.30 | 0.41 | 9.61 | 3.112 | 0.04 | 0.56 | 10.14 |
…… | ||||||||
Average | ||||||||
8.435 | 5.591 | 1.499 | 2.189 | 5.087 | 5.676 | 1.959 | 2.789 | 5.134 |
Reference Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | Average |
---|---|---|---|---|---|---|---|---|---|
time bias (s) | −0.032 | −0.068 | 0.194 | 0.159 | −0.065 | −0.001 | 0.083 | … | 0.039 |
Item | x | y | z | Final Position |
---|---|---|---|---|
Difference (m) | 0.45 | 6.63 | 3.75 | 7.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Meng, K.; Sun, W.; Shu, J.; Xu, T.; Zhang, H. Fast Ray-Tracing-Based Precise Localization for Internet of Underwater Things without Prior Acknowledgment of Target Depth. J. Mar. Sci. Eng. 2024, 12, 562. https://doi.org/10.3390/jmse12040562
Huang W, Meng K, Sun W, Shu J, Xu T, Zhang H. Fast Ray-Tracing-Based Precise Localization for Internet of Underwater Things without Prior Acknowledgment of Target Depth. Journal of Marine Science and Engineering. 2024; 12(4):562. https://doi.org/10.3390/jmse12040562
Chicago/Turabian StyleHuang, Wei, Kaitao Meng, Wenzhou Sun, Jianxu Shu, Tianhe Xu, and Hao Zhang. 2024. "Fast Ray-Tracing-Based Precise Localization for Internet of Underwater Things without Prior Acknowledgment of Target Depth" Journal of Marine Science and Engineering 12, no. 4: 562. https://doi.org/10.3390/jmse12040562
APA StyleHuang, W., Meng, K., Sun, W., Shu, J., Xu, T., & Zhang, H. (2024). Fast Ray-Tracing-Based Precise Localization for Internet of Underwater Things without Prior Acknowledgment of Target Depth. Journal of Marine Science and Engineering, 12(4), 562. https://doi.org/10.3390/jmse12040562