Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Fluid Dynamics (CFD) Software
2.2. Experimental Fluid Dynamics (EFD) Validation
2.3. Manufacturing Technology and Materials
3. Results and Discussion
3.1. First Design Stage: Requirements and Preliminary Design
- Optimal solar panel integration: The design aims to make the working deck as big as possible in relation to the ship’s size. This has two benefits: it helps with fitting all systems aboard and prepares the ship for the addition of solar panels later on.
- Balanced seakeeping and stability: Balancing seakeeping and stability is crucial for long-duration missions, as specified. Placing the ship’s center of mass low, while keeping in mind the limitations of gyroscopic stabilization, is a perfect balance between seakeeping and stability.
- Single propulsion system: A propulsion system consisting of a motor, shaft, and propeller ensures simplicity in construction and efficient operation and control.
- Low hydrodynamic resistance: The hydrodynamic resistance of the USV hull should be as low as possible to reduce the power requirements necessary for navigation.
3.2. Second Design Stage: CFD Analysis
3.3. Third Design Stage: Manufacturing and Experimental Validation
3.3.1. Manufacture of the Vessel’s Hull
3.3.2. Hydrodynamic Experimental Validation
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanfilippo, F.; Tang, M.; Steyaert, S. Aquatic Surface Robots: The State of the Art, Challenges and Possibilities. In Proceedings of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 7–9 September 2020; pp. 1–6. [Google Scholar]
- Panda, J.P.; Mitra, A.; Warrior, H.V. A review on the hydrodynamic characteristics of autonomous underwater vehicles. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2020, 235, 15–29. [Google Scholar] [CrossRef]
- Alam, K.; Ray, T.; Anavatti, S.G. Design optimization of an unmanned underwater vehicle using low-and high-fidelity models. IEEE Trans. Syst. Man Cybern. Syst. 2015, 47, 2794–2808. [Google Scholar] [CrossRef]
- Alvarez, A.; Bertram, V.; Gualdesi, L. Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth. Ocean Eng. 2009, 36, 105–112. [Google Scholar] [CrossRef]
- Ignacio, L.C.; Victor, R.R.; Francisco, D.R.R.; Pascoal, A. Optimized design of an autonomous underwater vehicle, for exploration in the Caribbean Sea. Ocean Eng. 2019, 187, 106184. [Google Scholar] [CrossRef]
- Rashid, M.M.; Roy, R.; Ahsan, M.M.; Siddique, Z. Design and Development of an Autonomous Surface Vehicle for Water Quality Monitoring. arXiv 2022, arXiv:2201.10685. [Google Scholar] [CrossRef]
- Odetti, A.; Altosole, M.; Caccia, M.; Viviani, M.; Bruzzone, G. Wetlands Monitoring: Hints for Innovative Autonomous Surface Vehicles Design. In Technology and Science for the Ships of the Future; IOS Press: Amsterdam, The Netherlands, 2018; pp. 1014–1022. [Google Scholar] [CrossRef]
- Acua Ocean. Ocean Monitoring and Protection. ACUA Ocean Refresh. Available online: https://www.acua-ocean.com (accessed on 19 July 2022).
- Sanfilippo, F.; Tang, M.; Steyaert, S. The Aquatic Surface Robot (AnSweR), a Lightweight, Low Cost, Multipurpose Unmanned Research Vessel. In Intelligent Technologies and Applications; Communications in Computer and Information Science; Yayilgan, S.Y., Bajwa, I.S., Sanfilippo, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 251–265. [Google Scholar] [CrossRef]
- Torben, T. Hybrid Control of Autonomous Ferries. Project Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. [Google Scholar] [CrossRef]
- Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; dos Santos, D.H.; Gonçalves, L.M.G.; Amory, A.M. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions. Sensors 2019, 19, 702. [Google Scholar] [CrossRef]
- Khaled, D.; Aly, H.; Khaled, M.; Mahmoud, N.; Shabaan, S.; Abdellatif, A. Development of a Sustainable Unmanned Surface Vehicle (USV) for Search and Rescue Operations. Int. Undergrad. Res. Conf. 2021, 5, 462–468. [Google Scholar]
- Kang, C.M.; Yeh, L.C.; Jie, S.Y.R.; Pei, T.J.; Nugroho, H. Design of USV for Search and Rescue in Shallow Water. In Intelligent Robotics and Applications; Lecture Notes in Computer Science; Chan, C.S., Liu, H., Zhu, X., Lim, C.H., Liu, X., Liu, L., Goh, K.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 351–363. [Google Scholar]
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control. 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Gao, X.-P.; Huo, C. Motion planning for unmanned surface vehicle based on a maneuverability mathematical model. Ocean Eng. 2022, 265, 112507. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Z.; Peng, H.; Wang, L.; Wang, Y.; Tao, L.; Lu, C.; Peng, Z. Autonomous docking trajectory optimization for unmanned surface vehicle: A hierar-chical method. Ocean. Eng. 2023, 279, 114156. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Jafarbiglu, H.; Abdolmaleki, H.; Omrani, E.; Monhaseri, F.; Abdollahzadeh, M.-R.; Mohammadi-Aghdam, A.; Kiapei, A.; Salmani-Zakaria, Y.; Makhsoos, A. Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle (USV) by algorithms fusion. Ocean Eng. 2018, 159, 56–65. [Google Scholar] [CrossRef]
- Liang, X.; Qu, X.; Hou, Y.; Li, Y.; Zhang, R. Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments. Ocean Eng. 2020, 205, 107328. [Google Scholar] [CrossRef]
- He, S.; Dong, C.; Dai, S.-L. Adaptive neural formation control for underactuated unmanned surface vehicles with collision and connectivity constraints. Ocean Eng. 2021, 226, 108834. [Google Scholar] [CrossRef]
- Huang, B.; Song, S.; Zhu, C.; Li, J.; Zhou, B. Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation. Ocean Eng. 2021, 233, 109158. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, W.; Quan, D.; Shi, G.; Tang, L.; Hou, Y.; Breitkopf, P.; Zhu, J.; Gao, T. From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap. Arch. Comput. Methods Eng. 2019, 27, 805–830. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 2021, 34, 91–110. [Google Scholar] [CrossRef]
- Wu, F.; Lian, H.; Pei, G.; Guo, B.; Wang, Z. Design and optimization of the variable-density lattice structure based on load paths. Facta Univ. Series Mech. Eng. 2023, 21, 273–292. [Google Scholar] [CrossRef]
- Brizzolara, S.; Curtin, T.; Bovio, M.; Vernengo, G. Concept design and hydrodynamic optimization of an innovative SWATH USV by CFD methods. Ocean Dyn. 2011, 62, 227–237. [Google Scholar] [CrossRef]
- Guan, G.; Wang, L.; Geng, J.; Zhuang, Z.; Yang, Q. Parametric automatic optimal design of USV hull form with respect to wave resistance and seakeep-ing. Ocean. Eng. 2021, 235, 109462. [Google Scholar] [CrossRef]
- Prasad, B.; Dhanak, M. Hydrodynamics of Advanced-Hull Surface Vehicles. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Setiawan, J.D.; Septiawan, M.A.; Ariyanto, M.; Caesarendra, W.; Munadi, M.; Alimi, S.; Sulowicz, M. Development and Performance Measurement of an Affordable Unmanned Surface Vehicle (USV). Automation 2022, 3, 27–46. [Google Scholar] [CrossRef]
- ISO/ASTM 52910:2018; Additive Manufacturing Design Requirements, Guidelines and Recommendations. ISO/ASTM International: Geneva, Switzerland, 2018.
- Pei, E.; Kabir, I.R.; Leutenecker-Twelsiek, B. History of AM. In Springer Handbook of Additive Manufacturing; Pei, E., Bernard, A., Gu, D., Klahn, C., Monzón, M., Petersen, M., Sun, T., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 3–29. [Google Scholar] [CrossRef]
- University of Maine: 3Dirigo’, Maine Boats Homes & Harbors. Available online: https://maineboats.com/print/issue-162/university-maine-3dirigo (accessed on 9 November 2023).
- Moi. Composites Production Made Simple. Available online: https://www.moi.am/projects/mambo (accessed on 9 November 2023).
- Renau, J.; Tejada, D.; García, V.; López, E.; Domenech, L.; Lozano, A.; Barreras, F. Design, development, integration and evaluation of hybrid fuel cell power systems for an unmanned water surface vehicle. Int. J. Hydrog. Energy 2024, 54, 1273–1285. [Google Scholar] [CrossRef]
- Silva, I.S.; Campopiano, F.; Lopes, G.S.; Uenojo, A.K.; Silva, H.T.; Pellini, E.L.; Alvarez, A.A.; Barros, E.A. Development of a Trimaran ASV. IFAC-PapersOnLine 2018, 51, 8–13. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L. A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran. Appl. Energy 2023, 350, 121604. [Google Scholar] [CrossRef]
- Daidola, J.C.; Arnold, A.M.; Imbesi, M.J. Trimaran Preliminary Structural Design Procedures for a Large High Speed Sealift Ship. Nav. Eng. J. 2017, 129, 113–121. [Google Scholar]
- Tang, H.; Ren, H.; Zhong, Q. Design and model test of structural monitoring and assessment system for trimaran. Brodogradnja 2019, 70, 111–134. [Google Scholar] [CrossRef]
- Jia, D.; Li, F.; Zhang, C.; Li, L. Design and simulation analysis of trimaran bulkhead based on topological optimization. Ocean Eng. 2019, 191, 106304. [Google Scholar] [CrossRef]
- Khoob, A.A.; Ketabdari, M.J. Short-term prediction and analysis of wave-induced motion and load responses of a wave-piercing trimaran. Brodogradnja 2020, 71, 123–142. [Google Scholar] [CrossRef]
- Ghadimi, P.; Nazemian, A.; Ghadimi, A. Numerical scrutiny of the influence of side hulls arrangement on the motion of a Trimaran vessel in regular waves through CFD analysis. J. Braz. Soc. Mech. Sci. Eng. 2018, 41, 1. [Google Scholar] [CrossRef]
- Dogrul, A.; Yildiz, B. Numerical Prediction of Form Factor and Wave Interference of a Trimaran for Different Outrigger Positions. China Ocean Eng. 2022, 36, 279–288. [Google Scholar] [CrossRef]
- Khoob, A.A.; Feizi, A.; Mohamadi, A.; Vakilabadi, K.A.; Fazeliniai, A.; Moghaddampour, S. An experimental study on the effect of the side hull symmetry on the resistance performance of a wave-piercing trimaran. J. Mar. Sci. Appl. 2021, 20, 456–466. [Google Scholar] [CrossRef]
- Wang, S.; Duan, W.; Xu, Q.; Duan, F.; Deng, G.; Li, Y. Study on fast interference wave resistance optimization method for trimaran outrigger layout. Ocean Eng. 2021, 232, 109104. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, X.; Ren, H.; Yu, P. Numerical study of trimaran motion and wave load prediction based on time-domain Rankine-Green matching method. Ocean Eng. 2020, 214, 107605. [Google Scholar] [CrossRef]
- Xu, X.Y.; Meng, C.Y.; Wang, K. Resistance performance forecast of trimaran based on multiple regression analysis. E3S Web Conf. 2021, 261, 02072. [Google Scholar] [CrossRef]
- Yao, C.; Dong, G.; Sun, X.; Zheng, Y.; Feng, D. Numerical study on motion and added resistance of a trimaran advancing in waves based on hybrid Green function method. Appl. Ocean Res. 2023, 130, 103432. [Google Scholar] [CrossRef]
- Liao, X.; Chen, Z.; Gui, H.; Du, M. CFD prediction of ship seakeeping and slamming behaviors of a trimaran in oblique regular waves. J. Mar. Sci. Eng. 2021, 9, 1151. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Fu, Z.; Li, A.; Jiang, F. Study on the characteristics of trimaran seakeeping performance at various speeds. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 194. [Google Scholar] [CrossRef]
- Wang, S.; Ma, S.; Duan, W. Seakeeping optimization of trimaran outrigger layout based on NSGA-II. Appl. Ocean Res. 2018, 78, 110–122. [Google Scholar] [CrossRef]
- Zong, Z.; Hong, Z.; Wang, Y.; Hefazi, H. Hull form optimization of trimaran using self-blending method. Appl. Ocean Res. 2018, 80, 240–247. [Google Scholar] [CrossRef]
- Nazemian, A.; Ghadimi, P. CFD-based optimization of a displacement trimaran hull for improving its calm water and wavy condition resistance. Appl. Ocean Res. 2021, 113, 102729. [Google Scholar] [CrossRef]
- Nazemian, A.; Ghadimi, P. Global optimization of trimaran hull form to get minimum resistance by slender body method. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 67. [Google Scholar] [CrossRef]
- Sun, C.; Guo, C.; Wang, C.; Wang, L.; Lin, J. Numerical and experimental study of flow field between the main hull and demi-hull of a trimaran. J. Mar. Sci. Eng. 2020, 8, 975. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, H.; Zou, J.; Hu, A.; Yang, J. Experimental and numerical investigations on hydrodynamic and aerodynamic characteristics of the tunnel of planing trimaran. Appl. Ocean Res. 2017, 63, 1–10. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, J.; Gong, J.; Li, L. Effect of hull displacement on hydro- & aerodynamics of a planing trimaran. Appl. Ocean Res. 2022, 120, 103050. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, J. Tunnel flow of a planing trimaran and effects on resistance. Ocean Eng. 2021, 237, 109458. [Google Scholar] [CrossRef]
- Giménez, A.; Martínez, M.; Renau, J.; García, V.; Domenech, L.; Ibáñez, M.; Real, A.; Cortés, E.; Šakalyté, A.; García, J.A.; et al. Polymer-Based Interface Optimization for Coated Lightweight Composites Additive Manufacturing. In Proceedings of the 20th European Conference on Composite Materials, Lausanne, Switzerland, 26–30 June 2022; pp. 647–654. [Google Scholar]
Monohull | Catamaran | Trimaran | |
---|---|---|---|
Deck surface 1 | Small | Large | Large |
Seakeeping and stability | Medium | High | High |
Implementation of a single power axis | Implemented appropriately | Not implemented properly | Implemented appropriately |
Speed (m/s) | EFD Resistance (N) | CFD Resistance (N) | Deviation CFD vs. EFD |
---|---|---|---|
0.8 | 3.7 | 3.5 | 4.7% |
1.0 | 7.5 | 7.2 | 5.3% |
1.2 | 11.9 | 10.9 | 8.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renau Martínez, J.; García Peñas, V.; Ibáñez Arnal, M.; Giménez Sancho, A.; López González, E.; García Magariño, A.; Terroba Ramírez, F.; Moreno Ayerbe, F.J.; Sánchez López, F. Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System. J. Mar. Sci. Eng. 2024, 12, 268. https://doi.org/10.3390/jmse12020268
Renau Martínez J, García Peñas V, Ibáñez Arnal M, Giménez Sancho A, López González E, García Magariño A, Terroba Ramírez F, Moreno Ayerbe FJ, Sánchez López F. Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System. Journal of Marine Science and Engineering. 2024; 12(2):268. https://doi.org/10.3390/jmse12020268
Chicago/Turabian StyleRenau Martínez, Jordi, Víctor García Peñas, Manuel Ibáñez Arnal, Alberto Giménez Sancho, Eduardo López González, Adelaida García Magariño, Félix Terroba Ramírez, Francisco Javier Moreno Ayerbe, and Fernando Sánchez López. 2024. "Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System" Journal of Marine Science and Engineering 12, no. 2: 268. https://doi.org/10.3390/jmse12020268
APA StyleRenau Martínez, J., García Peñas, V., Ibáñez Arnal, M., Giménez Sancho, A., López González, E., García Magariño, A., Terroba Ramírez, F., Moreno Ayerbe, F. J., & Sánchez López, F. (2024). Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System. Journal of Marine Science and Engineering, 12(2), 268. https://doi.org/10.3390/jmse12020268