Structural Analysis and Functional Prediction of Gut Microbiota in Wild and Cultured Striped Knifejaw (Oplegnathus fasciatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. DNA Extraction and Determination of Intestinal Microbial Diversity
2.3. Data Processing Methods
2.3.1. Operational Taxonomic Unit (OTU) Clustering and Species Annotation
2.3.2. Alpha Diversity
2.3.3. Statistical Analysis
3. Results
3.1. Alpha Diversity of Gut Microbiota
3.2. Composition of Gut Microbiota
3.3. Nonmetric Multidimensional Scaling Analysis of Gut Microbiota
3.4. Functional Prediction of Gut Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.H.; Wang, J.W.; Lv, D.; Hu, Y.L.; Kong, J. Turbot (Scophthalmus maximus) Biodiversity Assessment Using High-Throughput Illumina Sequencing to Analyze Juvenile Turbot Intestines and Their Bacterial Cultures. Prog. Fish. Sci. 2019, 40, 84–94. [Google Scholar]
- Ganguly, S.; Prasad, A. Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev. Fish Biol. Fish. 2012, 22, 11–16. [Google Scholar] [CrossRef]
- Navarrete, P.; Espejo, R.T.; Romero, J. Molecular analysis of microbiota along the digestive tract of juvenile Atlantic salmon (Salmo salar L.). Microb. Ecol. 2009, 57, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquac. 2018, 10, 626–640. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 837. [Google Scholar] [CrossRef]
- Wang, C.C.; Yan, Q.P.; Huang, W.G.; Xiong, H.J.; Wang, Y.Z.; Ma, Y. Study on intestinal bactera of culured large yellow croaker (Pseudosciaena crocea) in Sansha bay Fuiian Provinee. J. Jimei Univ. (Nat. Sci.) 2014, 19, 1–6. [Google Scholar]
- Zhang, W.; Ni, L.; Huang, Z.Q.; Zheng, Z.D.; Ye, X.Y. Species identification and analyses on intestine bacterial fora of iced fresh large yellow croaker. J. Chin. Inst. Food Sci. Technol. 2013, 13, 188–196. [Google Scholar]
- González-Félix, M.L.; Gatlin, D.M., III; Urquidez-Bejarano, P.; de la Reé-Rodríguez, C.; Duarte-Rodríguez, L.; Sánchez, F.; Casas-Reyes, A.; Yamamoto, F.Y.; Ochoa-Leyva, A.; Perez-Velazquez, M. Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquaculture 2018, 491, 239–251. [Google Scholar] [CrossRef]
- Yamamoto, F.Y.; Yin, F.; Rossi, W., Jr.; Hume, M.; Gatlin, D.M., 3rd. β-1,3 glucan derived from Euglena gracilis and Algamune™ enhances innate immune responses of red drum (Sciaenops ocellatus L.). Fish Shellfish Immunol. 2018, 77, 273–279. [Google Scholar] [CrossRef]
- Ley, R.E.; Lozupone, C.A.; Hamady, M.; Knight, R.; Gordon, J.I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008, 6, 776–788. [Google Scholar] [CrossRef]
- Chanbari, M.; Kneifel, W.; Domig, K.J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculure 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Legrand, T.P.R.A.; Wynne, J.W.; Weyrich, L.S.; Oxley, A.P.A. A microbial sea of possibilitics: Current knowledge and prospects for an improved understanding of the fish microbiome. Rev. Aquac. 2020, 12, 1101–1134. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Youssef, N.; Sheik, C.S.; Krumholz, L.R.; Najar, F.Z.; Roe, B.A.; Elshahed, M.S. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl. Environ. Microbiol. 2009, 75, 5227–5236. [Google Scholar] [CrossRef]
- Romero, J.; Navarrete, P. 16S rDNA-based analysis ofdominant bacteria population associated with early lifestages of coho salmon (Oncorhynchus kisutch). Microb. Ecol. 2006, 51, 422–430. [Google Scholar] [CrossRef]
- Gou, N.N.; Zhong, M.Z.; Wang, K.F. Intestinal Microbial Community of Wild and Cultured Onychostoma macrolepi Based on 16S rRNA High-throughput Sequencing. Acta Agric. Boreali-Occident. Sin. 2021, 30, 963–970. [Google Scholar]
- Deng, Z.M. Study on Intestinal Microbiota of Wild and Cultured Coreius Guichenoti. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2018. [Google Scholar]
- Wu, S.G.; Wang, G.T.; Angert, E.R.; Wang, W.W.; Li, W.X.; Zou, H. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE 2012, 7, e30440. [Google Scholar] [CrossRef]
- Zuo, P.X.; Jin, F.P.; Leng, Y.; Wang, Z.F.; Wu, J.J.; Yu, H.M.; Deng, Y.L.; Zu, X.P.; Li, M.H.; Wang, J.B.; et al. Anesthetic Effect of Eugenol on Juvenile Schizothorax chongi. Chin. Agric. Sci. Bull. 2024, 40, 159–164. [Google Scholar]
- Sun, Z.Z.; Liu, X.Z.; Xu, Y.J.; Li, J.; Qu, J.Z.; Lan, G.G. Artificial breeding and cultivation techniques for Oplegnathus fasciatus. Shandong Fish. 2009, 26, 28–31. [Google Scholar]
- Baxevanis, A.D.; Bader, G.D.; Wishart, D.S. Bioinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Simpson, E. Measurment of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Theory of Mathematical Communication; University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Miyake, S.; Ngugi, D.K.; Stingl, U. Diet strongly influences the gut microbiota of surgeonfishes. Mol. Ecol. 2015, 24, 656–672. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; He, G.L.; Jin, T.; Chen, Y.J.; Dai, F.Y.; Luo, L.; Lin, S.M. High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides. Aquaculture 2021, 534, 736261. [Google Scholar] [CrossRef]
- Li, Z.Z.; Zhang, X.X.; Aweya, J.J.; Wang, S.Q.; Hu, Z.; Li, S.K.; Wen, X.B. Formulated diet alters gut microbiota compositions in marine fish Nibea coibor and Nibea diacanthus. Aquac. Res. 2019, 50, 126–138. [Google Scholar] [CrossRef]
- Youngblut, N.D.; Reischer, G.H.; Walters, W.; Schuster, N.; Walzer, C.; Stalder, G.; Ley, R.E.; Farnleitner, A.H. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 2019, 10, 2200. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Gu, Y.H.; Meng, J.Z.; Liang, Z.Q.; Mei, J.; Song, X.C.; Ba, J.W. Diversity and Functional Prediction of Intestinal Microbiota from Wild and Cultured Cyprinuscarpio haematopterus. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2024, 55, 218–227. [Google Scholar]
- Kim, P.S.; Shin, N.R.; Lee, J.B.; Kim, M.S.; Whon, T.W.; Hyun, D.W.; Yun, J.H.; Jung, M.J.; Kim, J.Y.; Bae, J.W. Host Habitat Is the Major Determinant of the Gut Microbiome of Fish. Microbiome 2021, 9, 166. [Google Scholar] [CrossRef]
- Wen, S.X.; Li, L.K.; Li, Y.P.; Li, C.Y.; Gong, X.L. Analysis of intestinal microbial diversity of shortjaw tapertail anchovy Coilia brachygnathus in different waters. J. Dalian Ocean Univ. 2023, 38, 615–622. [Google Scholar]
- Yu, J.; Kang, M.J.; Kim, Y.J.; Park, M.J.; Lim, J.K.; Noh, C.H.; Kang, S.G.; Lee, H.S.; Kwon, K.K. Comparison of intestine microbiota between wild and farmed Korean rockfish, Sebastes schlegelii. Ocean Sci. J. 2021, 56, 297–306. [Google Scholar] [CrossRef]
- Semova, I.; Carten, J.D.; Stombaugh, J.; Mackey, L.C.; Knight, R.; Farber, S.A.; Rawls, J.F. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 2012, 12, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.B.; Sun, Y.X.; Duan, Y.F.; Li, H.; Li, Y.; Liu, Q.S.; Wang, H.W.; Zhang, J.S. The effect of teprenone on the intestinal morphology and microbial community of Chinese sea bass (Lateolabrax maculatus) under intermittent hypoxic stress. Fish Physiol. Biochem. 2020, 46, 1873–1882. [Google Scholar] [CrossRef] [PubMed]
- Johny, T.K.; Puthusser, R.M.; Bhat, S.G. Metagenomic landscape of taxonomy, metabolic potential and resistome of Sardinella longiceps gut microbiome. Arch. Microbiol. 2022, 204, 87. [Google Scholar] [CrossRef]
- Yu, W.N.; Dai, W.F.; Tao, Z.; Xiong, J.B. Characterizing the compositional and functional structures of intestinal micro-flora between healthy and diseased Litopenaeus vannamei. J. Fish. China 2018, 42, 399–409. [Google Scholar]
- Michl, S.C.; Ratten, J.M.; Beyer, M.; Hasler, M.; LaRoche, J.; Schulz, C. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLoS ONE 2017, 12, e0177735. [Google Scholar] [CrossRef]
- Rasheeda, M.K.; Rangamaran, V.R.; Srinivasan, S.; Ramaiah, S.K.; Gunasekaran, R.; Jaypal, S.; Ramalingam, K. Comparative profiling of microbial community of three economically important fishes reared in sea cages under tropical offshore environment. Mar. Genom. 2017, 34, 57–65. [Google Scholar] [CrossRef]
- Mekuchi, M.; Asakura, T.; Sakata, K.; Yamaguchi, T.; Teruya, K.; Kikuchi, J. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE 2018, 13, e0197256. [Google Scholar] [CrossRef]
- Ingerslev, H.C.; Von-gersdorff, J.L.; Strube, M.L.; Larsen, N.; Dalsgaard, I.; Boye, M.; Madsen, L. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 2014, 424, 24–34. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Li, X.H.; Li, J.; Chen, W.T. The gut microbiome composition and degradation enzymes activity of black Amur bream (Megalobrama terminalis) in response to breeding migratory behavior. Ecol. Evol. 2021, 11, 5150–5163. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, B.; Meng, L.J.; Gao, J.Z.; Chen, Z.Z. Dynamic changes of gut microbiota of discus fish (Symphysodon haraldi) at different feeding stages. Aquaculture 2021, 531, 735912. [Google Scholar] [CrossRef]
- Nelson, A.M.; Walk, S.T.; Taube, S.; Taniuchi, M.; Houpt, E.R.; Wobus, C.E.; Young, V.B. Disruption of the Human Gut Microbiota following Norovirus Infection. PLoS ONE 2012, 7, e48224. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Joly-Guillou, M.L. Clinical impact and pathogenicity of Acinetobacter. Clin. Microbiol. Infect. 2005, 11, 868–873. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, K.T.; Gan, L.; Sun, J.J.; Guo, C.J.; Liu, L.; Huang, X.D. Intestinal microbiota of grass carp fed faba beans: A comparative study. Microorganisms 2019, 7, 465. [Google Scholar] [CrossRef]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef]
- Moi, I.M.; Leow, A.T.C.; Ali, M.S.M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Sabri, S. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl. Microbiol. Biotechnol. 2018, 102, 5811–5826. [Google Scholar] [CrossRef]
- Rosenau, F.; Jaeger, K. Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie 2000, 82, 1023–1032. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Z.; Ding, Q.; Yang, Y.; Bindelle, J.; Ran, C.; Zhou, Z. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes 2021, 13, 1900996. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Fan, Z.J.; Yi, M.M.; Liu, Z.Z.; Ke, X.L.; Gao, F.L.; Cao, J.M.; Wang, M.; Chen, G.; Lu, M.X. Characterization of the core gut microbiota of Nile tilapia (Oreochromis niloticus): Indication of a putative novel Cetobacterium species and analysis of its potential function on nutrition. Arch. Microbiol. 2022, 204, 690. [Google Scholar] [CrossRef]
- Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 2017, 7, 43412. [Google Scholar] [CrossRef] [PubMed]
- Yang, F. Feeding Ecology of Three Enhancement and Releasing Species in Zhoushan Islands. Master’s Thesis, Zhejiang Ocean University, Zhoushan, China, 2023. [Google Scholar]
- Mcfall-ngal, M.J. The development of cooperative associations between animals and bacteria: Establishing détente among domains. Am. Zool. 2015, 38, 593–608. [Google Scholar] [CrossRef]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; Oconnor, M.P.; Rosen, G.L.; Knight, R.; Kilham, S.S.; Russell, J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, B.; Liu, C.; Zhou, H.; Wang, X.; Mai, K.; He, G. Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2020, 100, 261–271. [Google Scholar] [CrossRef]
- Tachibana, L.; Telli, G.S.; de Carla, D.D.; Gonçalves, G.S.; Ishikawa, C.M.; Cavalcante, R.B.; Natori, M.M.; Hamed, S.B.; Ranzani-Paiva, M.J.T. Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquac. Rep. 2020, 16, 100277. [Google Scholar]
- Feller, G. Molecular adaptations to cold in psychrophilic enzymes. Cell. Mol. Life Sci. 2003, 60, 648–662. [Google Scholar] [CrossRef]
- Cai, H.Y.; Fang, Y.J.; Yu, K.Y. Identification of Shewanella at species level based on16S rRNA and gyrB genes. Dis. Surveill. 2021, 36, 42–47. [Google Scholar]
- Zhang, M.; Sun, K.; Wu, Y.; Yang, Y.; Tso, P.; Wu, Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Front. Immunol. 2017, 8, 942. [Google Scholar]
- Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017, 18, 2. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, Y.; Zhu, S.; Liu, L.; Cheng, K.; Ye, B.; Han, Y.; Fan, J.; Xia, M. Flavonifractor plautii Protects Against Elevated Arterial Stiffness. Circ. Res. 2023, 132, 167–181. [Google Scholar]
- Kuang, T.X.; He, A.; Lin, Y.F.; Huang, X.D.; Liu, L.; Zhou, L. Comparative analysis of microbial communities associated with the gill, gut, and habitat of two filter-feeding fish. Aquac. Rep. 2020, 18, 100501. [Google Scholar] [CrossRef]
- Chen, P.; Sun, Q.R.; Zhang, H.H.; Wang, S.; Wang, J.W.; Xu, Y.; Zhang, M.M.; Qiao, G.; Li, Q. Intestinal Microbiota Analysis in Gibel Carp Carassius auratus gibelio Based on 16S rRNA Gene Sequence. Fish. Sci. 2022, 41, 266–272. [Google Scholar]
- Huang, Q.; Sham, R.C.; Deng, Y.; Mao, Y.P.; Wang, C.X.; Zhang, T.; Leung, K.M.Y. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol. Ecol. 2020, 29, 5019–5034. [Google Scholar] [CrossRef] [PubMed]
- Donskey, C.J. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin. Infect. Dis. 2004, 39, 219–226. [Google Scholar] [CrossRef]
- Sommer, F.; Backhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
Population | Sample Count | Body Length (mm) | Mean Body Length (mm) | Body Weight (g) | Mean Body Weight (g) | |
---|---|---|---|---|---|---|
All | Wild | 100 | 96–143 | 124 ± 8 | 43.9–138.3 | 86.4 ± 17.5 |
Cultured | 74 | 88–141 | 108 ± 14 | 24.5–112.0 | 52.4 ± 17.7 | |
Gut Microbiota | Wild | 16 | 98–121 | 114 ± 6 | 37.9–83.5 | 67.7 ± 12.4 |
Cultured | 39 | 88–119 | 100 ± 10 | 24.8–73.3 | 44.9 ± 16.8 |
Phylum | Wild | Cultured | p-Value | q-Value |
---|---|---|---|---|
Pseudomonadota | 0.8629 | 0.2847 | <0.01 | 0.00194 |
Bacillota | 0.0902 | 0.2142 | <0.01 | 0.01368 |
Verrucomicrobiota | 0.0010 | 0.2381 | <0.01 | 0.00194 |
Chloroflexota | 0.0016 | 0.0567 | <0.01 | 0.00194 |
Actinomycetota | 0.0080 | 0.0249 | <0.01 | 0.00194 |
Acidobacteriota | 0.0019 | 0.0249 | <0.01 | 0.00194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Zhang, S.; Xu, K.; Wang, H. Structural Analysis and Functional Prediction of Gut Microbiota in Wild and Cultured Striped Knifejaw (Oplegnathus fasciatus). J. Mar. Sci. Eng. 2024, 12, 2275. https://doi.org/10.3390/jmse12122275
Zhu K, Zhang S, Xu K, Wang H. Structural Analysis and Functional Prediction of Gut Microbiota in Wild and Cultured Striped Knifejaw (Oplegnathus fasciatus). Journal of Marine Science and Engineering. 2024; 12(12):2275. https://doi.org/10.3390/jmse12122275
Chicago/Turabian StyleZhu, Kai, Susu Zhang, Kaida Xu, and Haozhan Wang. 2024. "Structural Analysis and Functional Prediction of Gut Microbiota in Wild and Cultured Striped Knifejaw (Oplegnathus fasciatus)" Journal of Marine Science and Engineering 12, no. 12: 2275. https://doi.org/10.3390/jmse12122275
APA StyleZhu, K., Zhang, S., Xu, K., & Wang, H. (2024). Structural Analysis and Functional Prediction of Gut Microbiota in Wild and Cultured Striped Knifejaw (Oplegnathus fasciatus). Journal of Marine Science and Engineering, 12(12), 2275. https://doi.org/10.3390/jmse12122275