Seasonal Surges in Bacterial Diversity along the Coastal Waters of the Eastern Arabian Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location and Sample Collection
2.2. Physiochemical Properties
2.3. DNA Isolation
2.4. Whole Genome Library Preparation and Sequencing
2.5. Downstream Processing
2.6. Diversity Analysis and Taxonomy Classification
2.7. Statistical Analysis
3. Results
3.1. Estimation of Physiochemical Parameters
3.2. Bacterial Diversity
3.3. KEGG Analysis
3.4. CAZymes
3.5. Abiotic Factors of the System and Diversity
4. Discussion
4.1. Physicochemical Settings during the Study
4.2. Taxonomic Distribution during PR
4.3. Taxonomic Distribution during PM
4.4. Taxonomic Distribution during MN
4.5. Functional Analysis
- Increased nutrient availability: During the spring inter-monsoon period (PR), the surface layers of the Arabian Sea are nutrient-depleted, but during the summer monsoon, phytoplankton growth is fueled by upwelling events. This upwelling brought on nutrient-rich cold subsurface water into the euphotic zone, with reported 3-fold increases in nitrate compared to surrounding areas. Consequently, high productivity occurs in the Arabian Sea during this season, providing increased organic material for bacterial metabolism [92]. Earlier research conducted in the South China Sea [76], Western Subtropical Pacific [93], and Arabian Sea [94] corroborated these findings.
- Riverine influxes with anthropogenic inputs: August corresponds to one of the peak riverine runoff months [95]. Our study corroborates previous findings [96,97] as it demonstrates higher nutrient concentrations during the MN period and these could also be anthropogenic driven. Studies shows a 4–6-fold increase in anthropogenic nutrient flux in the past 50 years [98,99]. This is largely attributed to the increased industrialization along the coastline and the rapid development of the agricultural sector in Western Coastal India (WCI). The region is known for cultivating a variety of crops such as rice, bajra, jowar, cotton, millets, and pulses, which have seen significant growth due to the expansion of agricultural activities [100]. This intensification of industrial and agricultural practices near coastal areas has led to various environmental impacts, including increased nutrient runoff [101,102,103]. Research indicates that riverine ecosystems exhibit higher bacterial abundance compared to intertidal and ocean systems [104]. Thus, the riverine runoff during monsoon could positively contribute to the bacterial diversity.
- Chlorophyll a (Chl a) as a proxy for phytoplankton biomass: High Chl a levels indicate an elevated productivity and organic matter availability, supporting increased bacterial growth [105]. Enhanced levels of nitrates, nitrites, and silicates directly promote phytoplankton growth [106], which contributes significantly during the MN. Such enhanced levels of nutrients were observed during this study. Moreover, upwelling positively influences the phytoplankton blooms [107]; researchers have investigated for decades the relationship between bacteria and algae involving the assimilation and remineralization of phytoplankton-derived organic matter by bacteria [108,109]. All of these attributes point to the conclusion that phytoplankton blooms due to upwelled nutrients could be a reason for higher bacterial diversity during MN in the study region.
- Deeper water communities: Bacterial communities adapted to deeper waters ascend to the surface during the MN, sustained by optimal conditions created during upwelling—lower temperatures, higher nutrients, and salinity [106]. These communities revert to their native compositions when surface water conditions return to normal physicochemical levels. Recent studies in ocean systems indicate that deeper waters harbor more diverse bacterial community than surface waters [110]. During upwelling events, these diverse communities ascend to the surface and possibly attempt to adapt to the environment.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.P.; Madhupratap, M.; Kumar, M.D.; Muraleedharan, P.M.; De Souza, S.N.; Gauns, M.; Sarma, V. High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection. Curr. Sci. 2001, 81, 1633–1638. [Google Scholar]
- Akhil, V.P.; Lengaigne, M.; Krishnamohan, K.S.; Keerthi, M.G.; Vialard, J. Southeastern Arabian Sea Salinity variability: Mechanisms and influence on surface temperature. Clim. Dyn. 2023, 61, 3737–3754. [Google Scholar] [CrossRef]
- Kumar, S.P.; Roshin, R.P.; Narvekar, J.; Kumar, P.D.; Vivekanandan, E. What drives the increased phytoplankton biomass in the Arabian Sea? Curr. Sci. 2010, 99, 101–106. [Google Scholar]
- Retnamma, J.; Chinnadurai, K.; Loganathan, J.; Nagarathinam, A.; Singaram, P.; Jose, A.K. Ecological responses of autotrophic microplankton to the eutrophication of the coastal upwelling along the Southwest coast of India. Environ. Sci. Pollut. Res. 2021, 28, 11401–11414. [Google Scholar] [CrossRef] [PubMed]
- Parab, A.S.; Jagtap, A.S.; Meena, R.M.; Manohar, C.S. Bacterial dynamics along the west coast of India during the non-monsoon and monsoon season. Cont. Shelf Res. 2022, 251, 104876. [Google Scholar] [CrossRef]
- Prakash, S.; Ramesh, R. Is the Arabian Sea getting more productive? Curr. Sci. 2007, 92, 5. [Google Scholar]
- Narayanan Nampoothiri, S.V.; Ramu, C.V.; Rasheed, K.; Sarma, Y.V.B.; Gupta, G.V.M. Observational evidence on the coastal upwelling along the northwest coast of India during summer monsoon. Environ. Monit. Assess. 2021, 194, 5. [Google Scholar] [CrossRef]
- Albin, K.J.; Jyothibabu, R.; Alok, K.T.; Santhikrishnan, S.; Sarath, S.; Sudheesh, V.; Sherin, C.K.; Balachandran, K.K.; Asha Devi, C.R.; Gupta, G.V.M. Distinctive phytoplankton size responses to the nutrient enrichment of coastal upwelling and winter convection in the eastern Arabian Sea. Prog. Oceanogr. 2022, 203, 102779. [Google Scholar] [CrossRef]
- Sherin, C.K.; Gupta, G.V.M.; Sudheesh, V.; Ramu, C.V.; Reddy, B.; Harikrishnachari, N.V.; Vijayan, A.K. Nutriclines and nutrient stoichiometry in the eastern Arabian Sea: Intra-annual variations and controlling mechanisms. Prog. Oceanogr. 2023, 215, 103048. [Google Scholar] [CrossRef]
- Barber, R.T.; Marra, J.; Bidigare, R.C.; Codispoti, L.A.; Halpern, D.; Johnson, Z.; Latasa, M.; Goericke, R.; Smith, S.L. Primary productivity and its regulation in the Arabian Sea during 1995. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 1127–1172. [Google Scholar] [CrossRef]
- Goes, J.I.; Thoppil, P.G.; Gomes, H.d.R.; Fasullo, J.T. Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 2005, 308, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. The Arabian Sea of the 1990s: New biogeochemical understanding. Prog. Oceanogr. 2005, 2, 113–115. [Google Scholar] [CrossRef]
- Bird, C.; Martinez Martinez, J.; O’Donnell, A.G.; Wyman, M. Spatial distribution and transcriptional activity of an uncultured clade of planktonic diazotrophic γ-proteobacteria in the Arabian Sea. Appl. Environ. Microbiol. 2005, 71, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Barcelos e Ramos, J.; Schulz, K.G.; Voss, M.; Narciso, Á.; Müller, M.N.; Reis, F.V.; Cachão, M.; Azevedo, E.B. Nutrient-specific responses of a phytoplankton community: A case study of the North Atlantic Gyre, Azores. J. Plankton Res. 2017, 39, 744–761. [Google Scholar] [CrossRef]
- Sison-Mangus, M.P.; Jiang, S.; Kudela, R.M.; Mehic, S. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events. Front. Microbiol. 2016, 7, 1433. [Google Scholar] [CrossRef]
- Arandia-Gorostidi, N.; Krabberød, A.K.; Logares, R.; Deutschmann, I.M.; Scharek, R.; Morán, X.A.G.; González, F.; Alonso-Sáez, L. Novel Interactions Between Phytoplankton and Bacteria Shape Microbial Seasonal Dynamics in Coastal Ocean Waters. Front. Mar. Sci. 2022, 9, 901201. [Google Scholar] [CrossRef]
- Fernandes, V.; Bogati, K. Analysis of Bacteria–Phytoplankton relationships at three discrete locations in the Eastern Arabian Sea during winter. Cont. Shelf Res. 2022, 243, 104751. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; d’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Nogales, B.; Lanfranconi, M.P.; Piña-Villalonga, J.M.; Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 2011, 35, 275–298. [Google Scholar] [CrossRef]
- Morrison, J.M.; Codispoti, L.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep Sea Res. Part II Top. Stud. Oceanogr. 1998, 45, 2053–2101. [Google Scholar] [CrossRef]
- Sachithanandam, V.; Saravanane, N.; Chandrasekar, K.; Karthick, P.; Lalitha, P.; Sai Elangovan, S.; Sudhakar, M. Microbial diversity from the continental shelf regions of the Eastern Arabian Sea: A metagenomic approach. Saudi J. Biol. Sci. 2020, 27, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Muller-Karger, F.; Varela, R.; Thunell, R.; Scranton, M.; Bohrer, R.; Taylor, G.; Capelo, J.; Astor, Y.; Tappa, E.; Ho, T. Annual cycle of primary production in the Cariaco Basin: Response to upwelling and implications for vertical export. J. Geophys. Res. Oceans 2001, 106, 4527–4542. [Google Scholar] [CrossRef]
- Grasshoff, K. Determination of nutrients. In Methods of Seawater Analysis; Wiley: Hoboken, NJ, USA, 1983; pp. 125–187. [Google Scholar]
- García-Robledo, E.; Corzo, A.; Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 2014, 162, 30–36. [Google Scholar] [CrossRef]
- Yakushev, E.; Vinogradova, E.; Dubinin, A.; Kostyleva, A.; Men’shikova, N.; Pakhomova, S.V. On determination of low oxygen concentrations with Winkler technique. Oceanology 2012, 52, 122–129. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Dröge, J.; Gregor, I.; McHardy, A.C. Taxator-tk: Precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. Bioinformatics 2015, 31, 817–824. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef]
- Prokka: Rapid Prokaryotic Genome Annotation | Bioinformatics | Oxford Academic. Available online: https://academic.oup.com/bioinformatics/article/30/14/2068/2390517 (accessed on 12 July 2024).
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J. Vegan: Community Ecology Package. 2010. Available online: http://vegan.r-forge.r-project.org/ (accessed on 1 June 2023).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; Primer-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [PubMed]
- Marra, J.; Barber, R.T. Primary productivity in the Arabian Sea: A synthesis of JGOFS data. Prog. Oceanogr. 2005, 65, 159–175. [Google Scholar] [CrossRef]
- Bauer, S.; Hitchcock, G.L.; Olson, D.B. Influence of monsoonally-forced Ekman dynamics upon surface layer depth and plankton biomass distribution in the Arabian Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 1991, 38, 531–553. [Google Scholar] [CrossRef]
- Jayaram, C.; Chacko, N.; Joseph, K.A.; Balchand, A. Interannual variability of upwelling indices in the southeastern Arabian Sea: A satellite based study. Ocean Sci. J. 2010, 45, 27–40. [Google Scholar] [CrossRef]
- Jyothibabu, R.; Madhu, N.V.; Jayalakshmi, K.V.; Balachandran, K.K.; Shiyas, C.A.; Martin, G.D.; Nair, K.K.C. Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters—India). Estuar. Coast. Shelf Sci. 2006, 69, 505–518. [Google Scholar] [CrossRef]
- Madhupratap, M.; Nair, K.; Gopalakrishnan, T.; Haridas, P.; Nair, K.; Venugopal, P.; Gauns, M. Arabian Sea oceanography and fisheries of the west coast of India. Curr. Sci. 2001, 81, 355–361. [Google Scholar]
- Muraleedharan, P.; Prasannakumar, S. Arabian Sea Upwelling—A Comparison between Coastal and Open Ocean Regions. Curr. Sci. 1996, 71, 842–846. [Google Scholar]
- Smitha, B.; Sanjeevan, V.; Vimalkumar, K.; Revichandran, C. On the upwelling off the southern tip and along the west coast of India. J. Coast. Res. 2008, 4, 95–102. [Google Scholar] [CrossRef]
- Roman-Stork, H.L.; Subrahmanyam, B.; Murty, V.S.N. The Role of Salinity in the Southeastern Arabian Sea in Determining Monsoon Onset and Strength. J. Geophys. Res. Oceans 2020, 125, e2019JC015592. [Google Scholar] [CrossRef]
- Gupta, G.; Jyothibabu, R.; Ramu, C.V.; Reddy, A.Y.; Balachandran, K.; Sudheesh, V.; Kumar, S.; Chari, N.; Bepari, K.F.; Marathe, P.H. The world’s largest coastal deoxygenation zone is not anthropogenically driven. Environ. Res. Lett. 2021, 16, 054009. [Google Scholar] [CrossRef]
- Newton, R.J.; Griffin, L.E.; Bowles, K.M.; Meile, C.; Gifford, S.; Givens, C.E.; Howard, E.C.; King, E.; Oakley, C.A.; Reisch, C.R. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010, 4, 784–798. [Google Scholar] [CrossRef] [PubMed]
- Delmont, T.O.; Quince, C.; Shaiber, A.; Esen, Ö.C.; Lee, S.T.; Rappé, M.S.; McLellan, S.L.; Lücker, S.; Eren, A.M. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 2018, 3, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, A.L.; Stibal, M.; Bælum, J.; Sicheritz-Pontén, T.; Brunak, S.; Bowman, J.S.; Hansen, L.H.; Jacobsen, C.S.; Blom, N. Bacterial diversity in snow on North Pole ice floes. Extremophiles 2014, 18, 945–951. [Google Scholar] [CrossRef]
- Huber, J.A.; Mark Welch, D.B.; Morrison, H.G.; Huse, S.M.; Neal, P.R.; Butterfield, D.A.; Sogin, M.L. Microbial population structures in the deep marine biosphere. Science 2007, 318, 97–100. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef]
- Molina-Pardines, C.; Haro-Moreno, J.M.; López-Pérez, M. Phosphate-related genomic islands as drivers of environmental adaptation in the streamlined marine alphaproteobacterial HIMB59. MSystems 2023, 8, e00898-23. [Google Scholar] [CrossRef]
- Nair, H.P.; Puthusseri, R.M.; Vincent, H.; Bhat, S.G. 16S rDNA-based bacterial diversity analysis of Arabian Sea sediments: A metagenomic approach. Ecol. Genet. Genom. 2017, 3–5, 47–51. [Google Scholar] [CrossRef]
- Lai, X.; Zeng, X.; Fang, S.; Huang, Y.; Cao, L.; Zhou, S. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial community composition in deep-sea sediments of the South China Sea. World J. Microbiol. Biotechnol. 2006, 22, 1337–1345. [Google Scholar] [CrossRef]
- Moran, M.A.; Belas, R.; Schell, M.A.; González, J.M.; Sun, F.; Sun, S.; Binder, B.J.; Edmonds, J.; Ye, W.; Orcutt, B.; et al. Ecological genomics of marine Roseobacters. Appl. Environ. Microbiol. 2007, 73, 4559–4569. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.M.; Rappé, M.S.; Connon, S.A.; Vergin, K.L.; Siebold, W.A.; Carlson, C.A.; Giovannoni, S.J. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 2002, 420, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Thrash, J.C.; Boyd, A.; Huggett, M.J.; Grote, J.; Carini, P.; Yoder, R.J.; Robbertse, B.; Spatafora, J.W.; Rappé, M.S.; Giovannoni, S.J. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 2011, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Rappé, M.S.; Connon, S.A.; Vergin, K.L.; Giovannoni, S.J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 2002, 418, 630–633. [Google Scholar] [CrossRef]
- Vijayan, J.; Ammini, P.; Nathan, V.K. Diversity pattern of marine culturable heterotrophic bacteria in a region with coexisting upwelling and mud banks in the southeastern Arabian Sea. Environ. Sci. Pollut. Res. 2022, 29, 3967–3982. [Google Scholar] [CrossRef]
- Cottrell, M.T.; Kirchman, D.L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 2000, 66, 1692–1697. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Vashishtha, A.; Jos, A.L.M.; Khosla, A.; Basu, N.; Yadav, R.; Bhatt, A.; Gulani, A.; Singh, P.; Lakhera, S.; et al. Phylogenomics of the Phylum Proteobacteria: Resolving the Complex Relationships. Curr. Microbiol. 2022, 79, 224. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Song, Y.; Zeng, Q.; Zhang, Y.; Luo, H. Prochlorococcus have low global mutation rate and small effective population size. Nat. Ecol. Evol. 2022, 6, 183–194. [Google Scholar] [CrossRef]
- Partensky, F.; Blanchot, J.; Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. Inst. Océan. Spec. Issue Mar. Cyanobacteria 1999, 19, 457–476. [Google Scholar]
- Cheng, H.; Yuan, M.; Duan, Q.; Sun, R.; Shen, Y.; Yu, Q.; Li, S. Influence of phosphorus fertilization patterns on the bacterial community in upland farmland. Ind. Crops Prod. 2020, 155, 112761. [Google Scholar] [CrossRef]
- Gómez-Pereira, P.R.; Schüler, M.; Fuchs, B.M.; Bennke, C.; Teeling, H.; Waldmann, J.; Richter, M.; Barbe, V.; Bataille, E.; Glöckner, F.O. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environ. Microbiol. 2012, 14, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Kirchman, D.L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002, 39, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Thoppil, P.G.; Wallcraft, A.J.; Jensen, T.G. Winter convective mixing in the northern Arabian Sea during contrasting monsoons. J. Phys. Oceanogr. 2022, 52, 313–327. [Google Scholar] [CrossRef]
- Alonso-Sáez, L.; Palacio, A.S.; Cabello, A.M.; Robaina-Estévez, S.; González, J.M.; Garczarek, L.; López-Urrutia, Á. Transcriptional Mechanisms of Thermal Acclimation in Prochlorococcus. mBio 2023, 14, e03425-22. [Google Scholar] [CrossRef]
- Wu, C.; Narale, D.D.; Cui, Z.; Wang, X.; Liu, H.; Xu, W.; Zhang, G.; Sun, J. Diversity, structure, and distribution of bacterioplankton and diazotroph communities in the Bay of Bengal during the winter monsoon. Front. Microbiol. 2022, 13, 987462. [Google Scholar] [CrossRef]
- Vuillemin, A. Nitrogen cycling activities during decreased stratification in the coastal oxygen minimum zone off Namibia. Front. Microbiol. 2023, 14, 1101902. [Google Scholar] [CrossRef]
- Santoro, A.E.; Bayer, B.; Elling, F.J.; Pearson, A. Candidatus Nitrosopelagicus. In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 1–13. [Google Scholar] [CrossRef]
- Santoro, A.E.; Dupont, C.L.; Richter, R.A.; Craig, M.T.; Carini, P.; McIlvin, M.R.; Yang, Y.; Orsi, W.D.; Moran, D.M.; Saito, M.A. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean. Proc. Natl. Acad. Sci. USA 2015, 112, 1173–1178. [Google Scholar] [CrossRef]
- Blanchot, J.; Rodier, M.; Le Bouteiller, A. Effect of El Niño Southern Oscillation events on the distribution and abundance of phytoplankton in the Western Pacific Tropical Ocean along 165°E. J. Plankton Res. 1992, 14, 137–156. [Google Scholar] [CrossRef]
- Liu, Y.; Alessi, D.S.; Owttrim, G.W.; Kenney, J.P.L.; Zhou, Q.; Lalonde, S.V.; Konhauser, K.O. Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios. Geochim. Cosmochim. Acta 2016, 187, 179–194. [Google Scholar] [CrossRef]
- Liu, X.; Xie, N.; Li, J.; Bai, M.; Sen, B.; Wang, G. Potential Contribution of Coastal Upwelling to Carbon Sink through Interaction between Cyanobacteria and Microbial Eukaryotes. Water 2022, 14, 3097. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Chapter 6—Novel approaches in the use of biosurfactants in the oil industry and environmental remediation. In Biosurfactants; Soberón-Chávez, G., Ed.; Foundations and Frontiers in Enzymology; Academic Press: Cambridge, MA, USA, 2023; pp. 107–128. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhou, W.; Yuan, W.; Wang, D. Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Res. 2020, 46, 101794. [Google Scholar] [CrossRef]
- Math, R.K.; Jin, H.M.; Kim, J.M.; Hahn, Y.; Park, W.; Madsen, E.L.; Jeon, C.O. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: Cold tolerance and aromatic hydrocarbon metabolism. PLoS ONE 2012, 7, e35784. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Yu, X.; Wang, H.; Zheng, T.; Azam, F. Nutrient-dependent interactions between a marine copiotroph Alteromonas and a diatom Thalassiosira pseudonana. Mbio 2023, 14, e00940-23. [Google Scholar] [CrossRef] [PubMed]
- Bian, F.; Xie, B.-B.; Qin, Q.-L.; Shu, Y.-L.; Zhang, X.-Y.; Yu, Y.; Chen, B.; Chen, X.-L.; Zhou, B.-C.; Zhang, Y.-Z. Genome sequences of six Pseudoalteromonas strains isolated from Arctic sea ice. J. Bacteriol. 2012, 194, 908–909. [Google Scholar] [CrossRef]
- Li, D.; Sharp, J.O.; Drewes, J.E. Microbial genetic potential for xenobiotic metabolism increases with depth during biofiltration. Environ. Sci. Process. Impacts 2020, 22, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, E.; Kranabetter, J.; Hope, G.; Maas, K.R.; Hallam, S.; Mohn, W.W. Forest harvesting reduces the soil metagenomic potential for biomass decomposition. ISME J. 2015, 9, 2465–2476. [Google Scholar] [CrossRef]
- Manoharan, L.; Kushwaha, S.K.; Hedlund, K.; Ahrén, D. Captured metagenomics: Large-scale targeting of genes based on ‘sequence capture’reveals functional diversity in soils. DNA Res. 2015, 22, 451–460. [Google Scholar] [CrossRef]
- Xia, X.; Zheng, Q.; Leung, S.K.; Wang, Y.; Lee, P.Y.; Jing, H.; Jiao, N.; Liu, H. Distinct metabolic strategies of the dominant heterotrophic bacterial groups associated with marine Synechococcus. Sci. Total Environ. 2021, 798, 149208. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, M.; Zhang, Y.; Li, Y.; Xu, X.; Li, S.; Huang, H. Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PLoS ONE 2013, 8, e77437. [Google Scholar] [CrossRef]
- Walmagh, M.; Zhao, R.; Desmet, T. Trehalose analogues: Latest insights in properties and biocatalytic production. Int. J. Mol. Sci. 2015, 16, 13729–13745. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, M.T.; Yu, L.; Kirchman, D.L. Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenomic library and the Sargasso Sea. Appl. Environ. Microbiol. 2005, 71, 8506–8513. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.E.; Henrissat, B.; Coutinho, P.M.; Ekborg, N.A.; Hutcheson, S.W.; Weiner, R.M. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J. Bacteriol. 2006, 188, 3849–3861. [Google Scholar] [CrossRef]
- Violot, S.; Haser, R.; Sonan, G.; Georlette, D.; Feller, G.; Aghajari, N. Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 1256–1258. [Google Scholar] [CrossRef]
- Kumar, B.; Sarma, V. Variations in concentrations and sources of bioavailable organic compounds in the Indian estuaries and their fluxes to coastal waters. Cont. Shelf Res. 2018, 166, 22–33. [Google Scholar] [CrossRef]
- Tsai, A.-Y.; Gong, G.-C.; Sanders, R.W.; Chao, C.-F.; Chiang, K.-P. Microbial dynamics in an oligotrophic bay of the western subtropical Pacific: Impact of short-term heavy freshwater runoff and upwelling. J. Oceanogr. 2010, 66, 873–883. [Google Scholar] [CrossRef]
- Malik, A.; Fernandes, C.; Gonsalves, M.-J.; Subina, N.; Mamatha, S.; Krishna, K.; Varik, S.; Kumari, R.; Gauns, M.; Cejoice, R. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon. J. Sea Res. 2015, 95, 56–69. [Google Scholar] [CrossRef]
- Shivaprasad, A.; Vinita, J.; Revichandran, C.; Manoj, N.T.; Jayalakshmy, K.V.; Muraleedharan, K.R. Ambiguities in the classification of Cochin Estuary, West Coast of India. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 3595–3628. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Phytoplankton biomass dynamics in the Arabian Sea from VIIRS observations. J. Mar. Syst. 2022, 227, 103670. [Google Scholar] [CrossRef]
- Vinayachandran, P.N.M.; Masumoto, Y.; Roberts, M.J.; Huggett, J.A.; Halo, I.; Chatterjee, A.; Amol, P.; Gupta, G.V.M.; Singh, A.; Mukherjee, A.; et al. Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences 2021, 18, 5967–6029. [Google Scholar] [CrossRef]
- Krishna, M.; Prasad, M.; Rao, D.; Viswanadham, R.; Sarma, V.; Reddy, N. Export of dissolved inorganic nutrients to the northern Indian Ocean from the Indian monsoonal rivers during discharge period. Geochim. Cosmochim. Acta 2016, 172, 430–443. [Google Scholar] [CrossRef]
- Martin, G.; Nisha, P.; Balachandran, K.; Madhu, N.; Nair, M.; Shaiju, P.; Joseph, T.; Srinivas, K.; Gupta, G. Eutrophication induced changes in benthic community structure of a flow-restricted tropical estuary (Cochin backwaters), India. Environ. Monit. Assess. 2011, 176, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, A.; Swarnam, T.; Ravisankar, N.; Subramani, T.; Swain, S.; Jaisankar, I. Organic agriculture in coastal areas. In Towards Organic Agriculture; Gangwar, B., Jat, N.K., Eds.; Today & Tomorrow’s Printers and Publishers: New Delhi, India, 2017; Volume 2, pp. 87–108. [Google Scholar]
- Hamman, E.; Deane, F. The control of nutrient run-off from agricultural areas: Insights into governance from Australia’s sugarcane industry and the Great Barrier Reef. Transnatl. Environ. Law 2018, 7, 451–468. [Google Scholar] [CrossRef]
- Lv, Y.; Gu, S.; Guo, D. Valuing environmental externalities from rice–wheat farming in the lower reaches of the Yangtze River. Ecol. Econ. 2010, 69, 1436–1442. [Google Scholar] [CrossRef]
- George, R.; Muraleedharan, K.R.; Martin, G.D.; Sabu, P.; Gerson, V.J.; Dineshkumar, P.K.; Nair, S.M.; Chandramohanakumar, N.; Nair, K.K.C. Nutrient biogeochemistry of the eastern Arabian Sea during the southwest monsoon retreat. Environ. Earth Sci. 2013, 68, 703–718. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, H.-F.; He, Y.; Wu, J.-Y.; Jiang, Y.-X.; Tam, N.F.-Y.; Zhou, H.-W. Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef]
- Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol. 2010, 3, 544–563. [Google Scholar] [CrossRef]
- Kumar, P.S.; Kumaraswami, M.; Rao, G.D.; Ezhilarasan, P.; Sivasankar, R.; Rao, V.R.; Ramu, K. Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea. Cont. Shelf Res. 2018, 161, 20–28. [Google Scholar] [CrossRef]
- Ferreira, A.; Brotas, V.; Palma, C.; Borges, C.; Brito, A.C. Assessing phytoplankton bloom phenology in upwelling-influenced regions using ocean color remote sensing. Remote Sens. 2021, 13, 675. [Google Scholar] [CrossRef]
- Buchan, A.; LeCleir, G.R.; Gulvik, C.A.; González, J.M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 2014, 12, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Costas-Selas, C.; Martínez-García, S.; Delgadillo-Nuño, E.; Justel-Díez, M.; Fuentes-Lema, A.; Fernández, E.; Teira, E. Linking the impact of bacteria on phytoplankton growth with microbial community composition and co-occurrence patterns. Mar. Environ. Res. 2024, 193, 106262. [Google Scholar] [CrossRef] [PubMed]
- Bandekar, M.; Ramaiah, N.; Jain, A.; Meena, R.M. Seasonal and depth-wise variations in bacterial and archaeal groups in the Arabian Sea oxygen minimum zone. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 156, 4–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafza, S.; Parvathi, A.; Pradeep Ram, A.S.; Alok, T.K.; Neeraja, R.; Jyothibabu, R.; Gupta, G.V.M. Seasonal Surges in Bacterial Diversity along the Coastal Waters of the Eastern Arabian Sea. J. Mar. Sci. Eng. 2024, 12, 1796. https://doi.org/10.3390/jmse12101796
Hafza S, Parvathi A, Pradeep Ram AS, Alok TK, Neeraja R, Jyothibabu R, Gupta GVM. Seasonal Surges in Bacterial Diversity along the Coastal Waters of the Eastern Arabian Sea. Journal of Marine Science and Engineering. 2024; 12(10):1796. https://doi.org/10.3390/jmse12101796
Chicago/Turabian StyleHafza, S., A. Parvathi, A. S. Pradeep Ram, Thampan K. Alok, R. Neeraja, R. Jyothibabu, and G. V. M. Gupta. 2024. "Seasonal Surges in Bacterial Diversity along the Coastal Waters of the Eastern Arabian Sea" Journal of Marine Science and Engineering 12, no. 10: 1796. https://doi.org/10.3390/jmse12101796
APA StyleHafza, S., Parvathi, A., Pradeep Ram, A. S., Alok, T. K., Neeraja, R., Jyothibabu, R., & Gupta, G. V. M. (2024). Seasonal Surges in Bacterial Diversity along the Coastal Waters of the Eastern Arabian Sea. Journal of Marine Science and Engineering, 12(10), 1796. https://doi.org/10.3390/jmse12101796