On the Possibility of Detecting Pore Pressure Changes in Marine Sediments Using Bottom Seismometer Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Data Overview
2.2. Modeling of Effective Elastic Properties in Unconsolidated Sediments
2.3. Synthetic Seismic Data
3. Results
3.1. Effective Properties Modeling
3.2. Synthetic Seismic Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Formulas of Hertz–Mindlin Method [38,40]
Appendix A.2. Formulas of Hashin–Shtrikman Bounds [41]
Appendix A.3. Formulas of Berryman’s Self-Consistent Method [44]
Appendix A.4. Formulas for Gassmann’s Fluid Substitution [39]
Appendix A.5. Formulas for Calculating the Elastic Wave Velocities in Isotropic Medium
Appendix A.6. Formulas of Backus Method [47]
References
- Dugan, B.; Sheahan, T.C. Offshore sediment overpressures of passive margins: Mechanisms, measurement, and models. Rev. Geophys. 2012, 50, 1–20. [Google Scholar] [CrossRef]
- Bruce, B.; Bowers, G. Pore pressure terminology. Lead. Edge 2002, 21, 170–173. [Google Scholar] [CrossRef]
- Pinkston, F.W.M.; Flemings, P.B. Overpressure at the Macondo Well and its impact on the Deepwater Horizon blowout. Sci. Rep. 2019, 9, 7047. [Google Scholar] [CrossRef] [PubMed]
- Moernaut, J.; Wiemer, G.; Reusch, A.; Stark, N.; De Batist, M.; Urrutia, R.; Ladrón de Guevara, B.L.; Kopf, A.; Strasser, M. The influence of overpressure and focused fluid flow on subaquatic slope stability in a formerly glaciated basin: Lake Villarrica (South-Central Chile). Mar. Geol. 2017, 383, 35–54. [Google Scholar] [CrossRef]
- Tobin, H.J.; Saffer, D.M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 2009, 37, 679–682. [Google Scholar] [CrossRef]
- Tingay, M.R.P.; Hillis, R.R.; Swarbrick, R.E.; Morley, C.K.; Damit, A.R. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. AAPG Bull. 2009, 93, 51–74. [Google Scholar] [CrossRef]
- Yin, Z.; Linga, P. Methane hydrates: A future clean energy source. Chin. J. Chem. Eng. 2019, 27, 2026–2036. [Google Scholar] [CrossRef]
- Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J.; Dickens, G.R.; Dugan, B. Effect of Overpressure on Gas Hydrate Distribution. In Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, BC, Canada, 6–20 July 2008. [Google Scholar]
- Ren, J.; Liu, X.; Niu, M.; Yin, Z. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate—Implication for energy recovery. Chem. Eng. J. 2022, 437, 135368. [Google Scholar] [CrossRef]
- Li, C.; Zhan, L.; Lu, H. Mechanisms for Overpressure Development in Marine Sediments. J. Mar. Sci. Eng. 2022, 10, 490. [Google Scholar] [CrossRef]
- Vardy, M.E.; Vanneste, M.; Henstock, T.J.; Clare, M.A.; Forsberg, C.F.; Provenzano, G. State-of-the-art remote characterization of shallow marine sediments: The road to a fully integrated solution. Near Surf. Geophys. 2017, 15, 387–402. [Google Scholar] [CrossRef]
- Pinson, L.; Vardy, M.; Dix, J.; Henstock, T.; Bull, J.; Maclachlan, S. Deglacial history of glacial lake Windermere, UK: Implications for the central British and Irish Ice Sheet. J. Quat. Sci. 2013, 28, 83–94. [Google Scholar] [CrossRef]
- Morgan, E.; Vanneste, M.; Lecomte, I.; Baise, L.; Longva, O.; McAdoo, B. Estimation of free gas saturation from seismic reflection surveys by the genetic algorithm inversion of a P-wave attenuation model. Geophysics 2012, 77, R175–R187. [Google Scholar] [CrossRef]
- Toth, Z.; Spiess, V.; Kiell, H. Frequency dependence in seismoacoustic imaging of shallow free gas due to gas bubble resonance. J. Geophys. Res. Solid Earth 2015, 120, 8056–8072. [Google Scholar] [CrossRef]
- Neuzil, C.E. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations. Geophys. Res. Lett. 2015, 42, 4801–4808. [Google Scholar] [CrossRef]
- Yu, H.; Hilterman, F.J. The effect of pressure on rock properties in the Gulf of Mexico: Comparison between compaction disequilibrium and unloading. Interpretation 2014, 2, SB1–SB15. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Luo, X.; Wang, B.; Lei, Y.; Cheng, M.; Luo, H.; Wang, C.; Yu, L. Modeling of Overpressure Generation–Evolution of the Paleogene Source Rock and Implications for the Linnan Sag, Eastern China. Front. Earth Sci. 2022, 10, 829322. [Google Scholar] [CrossRef]
- Nifuku, K.; Kobayashi, Y.; Araki, Y.; Ashida, T.; Taniwaki, T. Overpressure evolution controlled by spatial and temporal changes in the sedimentation rate: Insights from a basin modelling study in offshore Suriname. Basin Res. 2020, 33, 1293–1314. [Google Scholar] [CrossRef]
- Prasad, M. Acoustic measurements in unconsolidated sands at low effective pressure and overpressure detection. Geophysics 2002, 67, 405–412. [Google Scholar] [CrossRef]
- Scott, C.L.; Shillington, D.J.; Minshull, T.A.; Edwards, R.A.; Brown, P.J. Wide-angle seismic data reveal extensive overpressures in the Eastern Black Sea Basin. Geophys. J. Int. 2009, 178, 1145–1163. [Google Scholar] [CrossRef]
- Marin-Moreno, H.; Minshull, T.A.; Edwards, R.A. Inverse modelling and seismic data constraints on overpressure generation by disequilibrium compaction and aquathermal pressuring: Application to the Eastern Black Sea Basin. Geophys. J. Int. 2013, 194, 814–833. [Google Scholar] [CrossRef]
- Bosch, M.; Mukerji, T.; Gonzalez, E. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics 2010, 75, A165–A176. [Google Scholar] [CrossRef]
- Wagner, C.; Gonzalez, A.; Agarwal, V.; Koesoemadinata, A.; Ng, D.; Trares, S.; Biles, N.; Fisher, K. Quantitative application of poststack acoustic impedance inversion to subsalt reservoir development. Lead. Edge 2012, 31, 528–537. [Google Scholar] [CrossRef]
- Vardy, M.E. Deriving shallow-water sediment properties using post-stack acoustic impedance inversion. Near Surf. Geophys. 2015, 13, 143–154. [Google Scholar] [CrossRef]
- Ariful Islam, S.M.; Shofiqul Islam, M.; Hossain, M.M. Investigation of fluid properties and their effect on seismic response: A case study of Fenchuganj gas field, Surma Basin, Bangladesh. Int. J. Oil Gas Coal Technol. 2014, 2, 36–54. [Google Scholar] [CrossRef]
- Bahamaei, Z.; Hosseini, E. Pore pressure prediction using seismic velocity modeling: Case study, Sefid-Zakhor gas field in Southern Iran. J. Pet. Explor. Prod. Technol. 2020, 10, 1051–1062. [Google Scholar] [CrossRef]
- Provenzano, G.; Zervos, A.; Vardy, M.E.; Henstock, T.J. Characterization of shallow overpressure in consolidating submarine slopes via seismic full waveform inversion. Q. J. Eng. Geol. Hydrogeol. 2020, 53, 366–377. [Google Scholar] [CrossRef]
- Hornbach, M.J.; Manga, M. The ability of rock physics models to infer marine in situ pore pressure. Geochem. Geophys. Geosystems 2014, 15, 4769–4780. [Google Scholar] [CrossRef]
- Dubinya, N.; Bayuk, I.; Hortov, A.; Myatchin, K.; Pirogova, A.; Shchuplov, P. Prediction of Overpressure Zones in Marine Sediments Using Rock-Physics and Other Approaches. J. Mar. Sci. Eng. 2022, 10, 1127. [Google Scholar] [CrossRef]
- Nguyen, P.K.T.; Nam, M.J. A Review on Methods for Constructing Rock Physics Model of Saturated Reservoir Rock for Time-Lapse Seismic. Geosystem Eng. 2011, 14, 95–107. [Google Scholar] [CrossRef]
- Bagriy, I.D.; Voitsitsky, Z.I.; Maslun, N.V.; Naumenko, U.Z.; Aksem, S.D.; Grieg, M.Y. Integrated geological-structural-thermo-atmo-geochemical studies—A tool for forecasting and searching for hydrocarbons and methane hydrates on the continental slope of the Black Sea. In Geology and Mineral Resources of the World Ocean; National Academy of Sciences of Ukraine: Kyiv, Ukraine, 2014; Volume 4, pp. 24–47. [Google Scholar]
- Gozhik, P.F.; Maslun, N.V.; Plotnikova, L.F.; Ivanik, M.M.; Yakushin, L.M.; Ishchenko, I.I. Stratigraphy of the Meso-Cenozoic Clades of the Peninsular-Western Shelf of the Black Sea; Institute of Geological Sciences of the National Academy of Sciences of Ukraine: Kyiv, Ukraine, 2006; 171p. [Google Scholar]
- Maslun, N.V.; Ivanik, M.M.; Tsikhotska, N.N.; Klyushina, G.V. Detailed Stratification of Maikop Clade in the Peninsula-Zahodny Shelf of the Black Sea/Biostratigraphic Criteria for the Analysis and Correlations in the Clade of the Phanerozoic of Ukraine; Institute of Geological Sciences of the National Academy of Sciences of Ukraine: Kyiv, Ukraine, 2005; pp. 153–159. [Google Scholar]
- Schneider, J.; Flemings, P.B.; Dugan, B.; Long, H.; Germaine, J.T. Overpressure and consolidation near the seafloor of Brazos-Trinity Basin IV, northwest deepwater Gulf of Mexico. J. Geophys. Res. 2009, 114, B05102. [Google Scholar] [CrossRef]
- Becker, D.E.; Crooks, J.H.A.; Been, K.; Jefferies, M.G. Work as a criterion for determining in situ and yield stresses in clays. Can. Geotech. J. 1987, 24, 549–564. [Google Scholar] [CrossRef]
- Saffer, D.M.; Silver, E.A.; Fisher, A.T.; Tobin, H.; Moran, K. Inferred pore pressures at the Costa Rica subduction zone: Implications for dewatering processes. Earth Planet. Sci. Lett. 2000, 177, 193–207. [Google Scholar] [CrossRef]
- Dugan, B.; Germaine, J. Near-seafloor overpressure in the deep-water Mississippi Canyon, northern Gulf of Mexico. Geophys. Res. Lett. 2008, 35, L02304. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerdji, T.; Dvorkin, J. Rock Physics Handbook, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020; pp. 220–308. [Google Scholar]
- Gassmann, F. Über die Elastizität poröser Medien. Vierteljahrsschr. Naturforschenden Ges. Zur. 1951, 96, 1–23. [Google Scholar]
- Mindlin, R.D. Compliance of elastic bodies in contact. J. Appl. Mech. 1949, 16, 259–268. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Sol. 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Avseth, P.; Mavko, G.; Dvorkin, J.; Rykkje, J. Diagnosing high-porosity sands for reservoir characterization using sonic and seismic. In SEG Technical Program Expanded Abstracts; 1998; pp. 1024–1027. [Google Scholar] [CrossRef]
- Dvorkin, J.; Prasad, M.; Sakai, A.; Lavoie, D. Elasticity of marine sediments: Rock physics modeling. Geophys. Res. Lett. 1999, 26, 1781–1784. [Google Scholar] [CrossRef]
- Berryman, J.G. Long-wavelength propagation in composite elastic media. J. Acoust. Soc. Am. 1980, 68, 1809–1831. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook. In Tools for Seismic Analysis of Porous Media, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; p. 234. [Google Scholar]
- Aki, K.; Richards, P.G. Quantitative Seismology; University Science Books: Melville, NY, USA, 2002. [Google Scholar]
- Backus, G.E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 1962, 67, 4427–4440. [Google Scholar] [CrossRef]
- Pirogova, A.S.; Tikhotskii, S.A.; Tokarev, M.Y.; Suchkova, A.V. Estimation of Elastic Stress-Related Properties of Bottom Sediments via the Inversion of Very- and Ultra-High-Resolution Seismic Data. Izv. Atmos. Ocean. Phys. 2019, 55, 1755–1765. [Google Scholar] [CrossRef]
- Souza, L.A.P. Shallow-Water Sub-Bottom Seismic Investigation: A Multi-Frequency Approach. Braz. J. Geophys. 2022, 40, 1–8. [Google Scholar] [CrossRef]
- Zaitsev, D.S.; Avdyukhina, M.; Ryzhkov, I.; Evseev, E.; Egorov, V.; Agafonov, V. Frequency response and self-noise of the MET hydrophone. J. Sens. Sens. Syst. 2018, 7, 443–452. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, W.; Wang, J.; Hu, X.; Chen, M.; Zhang, Y. Recent Progress in Fiber-Optic Hydrophones. Photonic Sens. 2021, 11, 109–122. [Google Scholar] [CrossRef]
Number of Variant | Depth Intervals of Critical Pore Pressure (mbsf) |
---|---|
1 | 6–9 (1 interval) |
2 | 13–29 (1 interval) |
3 | 37–43 (1 interval) |
4 | 6–9, 37–43 (2 intervals) |
5 | 6–9, 13–29, 37–43 (3 intervals) |
6 | 13–15, 16–17, 18–20, 23–24.5, 28–30 (5 intervals) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhotskiy, S.; Bayuk, I.; Dubinya, N. On the Possibility of Detecting Pore Pressure Changes in Marine Sediments Using Bottom Seismometer Data. J. Mar. Sci. Eng. 2023, 11, 1803. https://doi.org/10.3390/jmse11091803
Tikhotskiy S, Bayuk I, Dubinya N. On the Possibility of Detecting Pore Pressure Changes in Marine Sediments Using Bottom Seismometer Data. Journal of Marine Science and Engineering. 2023; 11(9):1803. https://doi.org/10.3390/jmse11091803
Chicago/Turabian StyleTikhotskiy, Sergey, Irina Bayuk, and Nikita Dubinya. 2023. "On the Possibility of Detecting Pore Pressure Changes in Marine Sediments Using Bottom Seismometer Data" Journal of Marine Science and Engineering 11, no. 9: 1803. https://doi.org/10.3390/jmse11091803
APA StyleTikhotskiy, S., Bayuk, I., & Dubinya, N. (2023). On the Possibility of Detecting Pore Pressure Changes in Marine Sediments Using Bottom Seismometer Data. Journal of Marine Science and Engineering, 11(9), 1803. https://doi.org/10.3390/jmse11091803