A New Classification Method for Ship Trajectories Based on AIS Data
Abstract
:1. Introduction
2. Methods
2.1. AIS Data Preprocessing
2.2. Ship Trajectory Class Definition
2.3. Ship Trajectory Feature Extraction
2.4. Ship Trajectory Classification
3. Experiment
3.1. Dataset
3.2. Feature Extraction
3.3. Classification Evaluation
4. Results and Validation
4.1. Classification Results of Ship Trajectories
4.2. Case Validation
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Transport Forum. ITF Transport Outlook 2021; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- IMO. Resolution MSC.74(69) Adoption of New and Amended Performance Standards; International Maritime Organisation: London, UK, 1998. [Google Scholar]
- IMO. Resolution A.1106(29) Revised Guidelines for the Onboard Operational Use of Shipborne Automatic Identification Systems(AIS); International Maritime Organisation: London, UK, 2015. [Google Scholar]
- Zhang, L.; Meng, Q.; Fang Fwa, T. Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters. Transp. Res. E Logist. Transp. Rev. 2019, 129, 287–304. [Google Scholar] [CrossRef]
- Zhen, R.; Jin, Y.; Hu, Q.; Shao, Z.; Nikitakos, N. Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier. J. Navig. 2017, 70, 648–670. [Google Scholar] [CrossRef]
- Andersson, P.; Ivehammar, P. Dynamic route planning in the Baltic Sea Region—A cost-benefit analysis based on AIS data. Marit. Econ. Logist. 2017, 19, 631–649. [Google Scholar] [CrossRef]
- Li, H.; Jiao, H.; Yang, Z. AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods. Transp. Res. E Logist. Transp. Rev. 2023, 175, 103152. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y. A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data. Information 2023, 14, 212. [Google Scholar] [CrossRef]
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
- Souza, E.; Boerder, K.; Matwin, S.; Worm, B. Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. PLoS ONE 2016, 11, e0158248. [Google Scholar] [CrossRef]
- Saini, R.; Pratim Roy, P.; Prosad Dogra, D. A segmental HMM based trajectory classification using genetic algorithm. Expert Syst. Appl. 2018, 93, 169–181. [Google Scholar] [CrossRef]
- Guo, T.; Xie, L. Research on Ship Trajectory Classification Based on a Deep Convolutional Neural Network. J. Mar. Sci. Eng. 2022, 10, 568. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Makris, A.; Tserpes, K. A Deep Learning Streaming Methodology for Trajectory Classification. ISPRS Int. J. Geo-Inf. 2021, 10, 250. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, X.; de Souza, E.N.; Hu, B.F.; Silver, D.L.; Matwin, S. Improving Point-based AIS Trajectory Classification with Partition-wise Gated Recurrent Units. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 4044–4051. [Google Scholar] [CrossRef]
- Kapadais, K.; Varlamis, I.; Sardianos, C.; Tserpes, K. A Framework for the Detection of Search and Rescue Patterns Using Shapelet Classification. Future Internet 2019, 11, 192. [Google Scholar] [CrossRef]
- Chuaysi, B.; Kiattisin, S. Fishing Vessels Behavior Identification for Combating IUU Fishing: Enable Traceability at Sea. Wirel. Pers. Commun. 2020, 115, 2971–2993. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Chatzikokolakis, K.; Tserpes, K.; Zissis, D. Classification of vessel activity in streaming data. In Proceedings of the DEBS ‘20: The 14th ACM International Conference on Distributed and Event-based Systems, Montreal, QC, Canada, 13–17 July 2020; pp. 153–164. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, L.; Peng, X.; Wen, Y.; Song, L. Loitering behavior detection and classification of vessel movements based on trajectory shape and Convolutional Neural Networks. Ocean Eng. 2022, 258, 111852. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, X.; Goerlandt, F.; Liu, Q. Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis. Reliab. Eng. Syst. Saf. 2020, 204, 107127. [Google Scholar] [CrossRef]
- Sidibé, A.; Shu, G. Study of Automatic Anomalous Behaviour Detection Techniques for Maritime Vessels. J. Navig. 2017, 70, 847–858. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes Soares, C. Data mining approach to shipping route characterization and anomaly detection based on AIS data. Ocean Eng. 2020, 198, 106936. [Google Scholar] [CrossRef]
- Balduzzi, M.; Pasta, A.; Wilhoit, K. A security evaluation of AIS automated identification system. In Proceedings of the Computer Security Applications Conference, New Orleans, LA, USA, 8–12 December 2014; pp. 436–445. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, J. The Obligations of an Anchored Vessel to Avoid Collision at Sea. J. Navig. 2013, 66, 473–477. [Google Scholar] [CrossRef]
- Lane, R.O.; Nevell, D.A.; Hayward, S.D.; Beaney, T.W. Maritime anomaly detection and threat assessment. In Proceedings of the 13th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Wolsing, K.; Roepert, L.; Bauer, J.; Wehrle, K. Anomaly Detection in Maritime AIS Tracks: A Review of Recent Approaches. J. Mar. Sci. Eng. 2022, 10, 112. [Google Scholar] [CrossRef]
- Ford, J.H.; Peel, D.; Kroodsma, D.; Hardesty, B.D.; Rosebrock, U.; Wilcox, C. Detecting suspicious activities at sea based on anomalies in Automatic Identification Systems transmissions. PLoS ONE 2018, 13, e201640. [Google Scholar] [CrossRef]
- Iphar, C.; Ray, C.; Napoli, A. Uses and Misuses of the Automatic Identification System. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time Series Feature Extraction on basis of Scalable Hypothesis tests (tsfresh—A Python package). Neurocomputing 2018, 307, 72–77. [Google Scholar] [CrossRef]
- Christ, M.; Kempa-Liehr, A.W.; Feindt, M. Distributed and parallel time series feature extraction for industrial big data applications. arXiv 2017. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Friedman, N.; Dan, G.; Goldszmidt, M. Bayesian Network Classifiers. Mach. Learn. 1997, 29, 131–163. [Google Scholar] [CrossRef]
- Ke, G.L.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.W.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Loh, W.Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, H.; Chen, N. A Survey on ensemble learning under the era of deep learning. Artif. Intell. Rev. 2023, 56, 5545–5589. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble Methods in Machine Learning. In Proceedings of the 1st International Workshop on Multiple Classifier Systems (MCS 2000), Cagliari, Italy, 21–23 June 2000; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1857, pp. 1–15. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Schaffer, C. Technical Note: Selecting a Classification Method by Cross-Validation. Mach. Learn. 1993, 13, 135–143. [Google Scholar] [CrossRef]
Name of the AIS Information | Description |
---|---|
MMSI | marine mobile service identifier |
time | AIS transmission time |
nav_status | state of ship |
lon | longitude |
lat | latitude |
cog | course of ship to ground |
sog | speed of ship to ground |
dest | port of destination |
ship_type | ship type |
Sog_Sum_Values | Sog_Median | Cog_Maximum | Cog_Minimum | … | |
---|---|---|---|---|---|
1 | −12.9 | 0.0 | 166.0 | −65.0 | … |
2 | −7.2 | 0.0 | 42.0 | −78.7 | … |
3 | 11.1 | 0.0 | 53.0 | 62.0 | … |
… | … | … | … | … | … |
427 | −1.4 | 0.0 | 180.0 | −178.0 | … |
428 | −12.8 | 0.0 | 179.5 | −178.7 | … |
429 | −1.7 | 0.0 | 176.0 | −167.0 | … |
Cog_Variance | Cog_Minimum | Lat_Maximum | Sog_Minimum | … | |
---|---|---|---|---|---|
1 | 258.4 | −65.0 | 0.2969 | −4.5 | … |
2 | 229.9 | −78.7 | 0.0398 | −6.0 | … |
3 | 105.4 | −62.0 | 0.0146 | −1.5 | … |
… | … | … | … | … | … |
427 | 1103.8 | −178.0 | 0.1423 | −14.7 | … |
428 | 2024.4 | −178.7 | 0.2434 | −4.6 | … |
429 | 1310.1 | −167.0 | 0.1444 | −7.6 | … |
Classifiers | Label | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
LightGBM | 0 | 0.77 | 0.89 | 0.83 | 0.88 |
1 | 0.86 | 0.71 | 0.77 | ||
2 | 1.00 | 1.00 | 1.00 | ||
3 | 0.91 | 0.91 | 0.91 | ||
4 | 0.83 | 0.83 | 0.83 | ||
Random Forest | 0 | 0.86 | 0.86 | 0.86 | 0.90 |
1 | 0.71 | 0.71 | 0.71 | ||
2 | 0.95 | 1.00 | 0.97 | ||
3 | 1.00 | 1.00 | 1.00 | ||
4 | 0.86 | 0.75 | 0.80 | ||
Decision Trees | 0 | 0.71 | 0.81 | 0.76 | 0.84 |
1 | 0.80 | 0.75 | 0.77 | ||
2 | 1.00 | 0.94 | 0.97 | ||
3 | 0.95 | 0.83 | 0.88 | ||
4 | 0.70 | 0.88 | 0.78 | ||
Naive Bayes | 0 | 0.80 | 0.86 | 0.83 | 0.87 |
1 | 0.94 | 0.79 | 0.86 | ||
2 | 0.95 | 0.86 | 0.90 | ||
3 | 0.95 | 0.95 | 0.95 | ||
4 | 0.62 | 0.89 | 0.73 | ||
Ensemble Classifier | 0 | 0.90 | 0.90 | 0.90 | 0.93 |
1 | 0.83 | 0.83 | 0.83 | ||
2 | 0.95 | 0.95 | 0.95 | ||
3 | 1.00 | 1.00 | 1.00 | ||
4 | 0.89 | 0.89 | 0.89 |
Classifiers | Means of 10-Fold Cross Validation | Standard Deviation of 10-Fold Cross Validation |
---|---|---|
LightGBM | 0.785 | 0.058 |
Random Forest | 0.796 | 0.030 |
Naive Bayes | 0.715 | 0.078 |
Decision Trees | 0.669 | 0.085 |
Ensemble Classifier | 0.817 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, D.; Chen, P.; Yang, J.; Li, X.; Zhao, Y. A New Classification Method for Ship Trajectories Based on AIS Data. J. Mar. Sci. Eng. 2023, 11, 1646. https://doi.org/10.3390/jmse11091646
Luo D, Chen P, Yang J, Li X, Zhao Y. A New Classification Method for Ship Trajectories Based on AIS Data. Journal of Marine Science and Engineering. 2023; 11(9):1646. https://doi.org/10.3390/jmse11091646
Chicago/Turabian StyleLuo, Dan, Peng Chen, Jingsong Yang, Xiunan Li, and Yizhi Zhao. 2023. "A New Classification Method for Ship Trajectories Based on AIS Data" Journal of Marine Science and Engineering 11, no. 9: 1646. https://doi.org/10.3390/jmse11091646