A Review of Path Planning for Unmanned Surface Vehicles
Abstract
:1. Introduction
2. Global Path Planning
2.1. Dijkstra Algorithm
2.2. A* Algorithm
2.3. Genetic Algorithm (GA)
2.4. Neural Network (NN)
2.5. Summary of Global Path Planning Algorithms
3. Local Path Planning
3.1. Artificial Potential Field (APF)
3.2. Rapidly Expanding Random Tree (RRT)
3.3. Velocity Obstacle (VO)
3.4. Dynamic Window Approach (DWA)
3.5. Summary of Local Path Planning Algorithms
4. Proximity Responsive Hazard Avoidance
4.1. Hazard Avoidance in a Complex Environment
4.2. Multi-Vessel Collision Hazard Avoidance
4.3. Summary of Hazard Avoidance Algorithm
5. Cluster Path Planning
5.1. Bionic Algorithm
5.2. Multi-Objective Task Assignment Algorithm
5.3. Summary of Cluster Path Planning Algorithm
6. Conclusions
7. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, W.; Low, K.H.; Chen, L. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target. IEEE Trans. Veh. Technol. 2020, 69, 6782–6787. [Google Scholar]
- Zhou, C.H.; Gu, S.D.; Wen, Y.Q.; Du, Z.; Xiao, C.S.; Huang, L.; Zhu, M. The review unmanned surface vehicle path planning: Based on multi-modality constraint. Ocean Eng. 2020, 200, 107043. [Google Scholar] [CrossRef]
- Meng, J.E.; Ma, C.; Liu, T.H.; Gong, H.B. Intelligent motion control of unmanned surface vehicles: A critical review. Ocean Eng. 2023, 280, 114562. [Google Scholar]
- Liu, X.; Ye, X.M.; Wang, Q.B.; Li, W.G.; Gao, H.L. Review on the research of local path planning algorithms for unmanned surface vehicles. Chin. J. Ship Res. 2021, 16 (Suppl. 1), 12–14. [Google Scholar]
- Wu, G.X.; Xu, T.T.; Sun, Y.S.; Zhang, J.W. Review of multiple unmanned surface vessels collaborative search and hunting based on swarm intelligence. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221091885. [Google Scholar] [CrossRef]
- Cheng, C.X.; Sha, Q.X.; He, B.; Li, G.L. Path planning and obstacle avoidance for AUV: A review. Ocean Eng. 2021, 235, 109355. [Google Scholar] [CrossRef]
- Ülkü, Ö.; Melih, A.; Tarık, A. A review of path planning algorithms in maritime autonomous surface ships: Navigation safety perspective. Ocean Eng. 2022, 252, 111010. [Google Scholar]
- Liu, L.X.; Wang, X.; Yang, X.; Liu, H.J.; Li, J.P.; Wang, P.F. Path planning techniques for mobile robots: Review and prospect. Expert Syst. Appl. 2023, 227, 120254. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J. Overview of obstacle avoidance path planning algorithm for unmanned surface vehicle. J. Comput. Appl. Softw. 2020, 37, 1–10+20. (In Chinese) [Google Scholar] [CrossRef]
- Abdulsaheb, J.A.; Kadhim, D.J. Classical and Heuristic Approaches for Mobile Robot Path Planning: A Survey. Robotics 2023, 12, 93. [Google Scholar] [CrossRef]
- Lin, S.; Liu, A.; Wang, J.; Kong, X. A Review of Path-Planning Approaches for Multiple Mobile Robots. Machines 2022, 10, 773. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [Google Scholar] [CrossRef]
- Gan, L.; Yan, Z.; Zhang, L.; Liu, K.Z.; Zheng, Y.Z.; Zhou, C.H.; Shu, Y.Q. Ship path planning based on safety potential field in inland rivers. J. Ocean Eng. 2022, 260, 111928. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connection with Graphs. J. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Borkar, P.; Sarode, M.V.; Malik, L.G. Acoustic signal based optimal route selection problem: Performance comparison of multi-attribute decision making methods. J. Trans. Internet Inf. Syst. 2016, 10, 647–669. [Google Scholar]
- Sekaran, J.F.; Kaluvan, H. Path Planning of Robot Using Modified Dijkstra Algorithm. In Proceedings of the 2018 National Power Engineering Conference (NPEC), Madurai, India, 9–10 March 2018. [Google Scholar]
- Guo, Q.; Zhang, Z.; Xu, Y. Path-Planning of Automated Guided Vehicle Based on Improved Dijkstra Algorithm. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017. [Google Scholar]
- Kang, W.H.; Xu, Y.C. Hierarchical Dijkstra algorithm for node-constrained shortest paths. J. South China Univ. Technol. 2017, 45, 66–73. [Google Scholar]
- Zhuang, J.Y.; Wan, L.; Liao, Y.L.; Sun, H.B. Research on global path planning of surface unmanned boats based on electronic nautical charts. J. Comput. Sci. 2011, 38, 211–214. [Google Scholar]
- Wang, H.L.; Mao, W.G.; Eriksson, L. A Three-Dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization. J. Ocean Eng. 2019, 186, 106131. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M.; Furcy, D. Lifelong planning A*. J. Artif. Intell. 2004, 155, 93–146. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.B.; Yang, M.; Zhao, Z.Y.; Wang, X.Y.; Bai, Y.B.; Wu, J.G.; Xu, J.P. Path planning of unmanned surface vessel in an unknown environment based on improved D*Lite algorithm. J. Ocean Eng. 2022, 266, 112873. [Google Scholar] [CrossRef]
- Hart, P. Nearest neighbor pattern classification. J. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar]
- Sang, H.Q.; You, Y.S.; Sun, X.J.; Zhou, Y.; Liu, F. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Eng. 2021, 223, 107809. [Google Scholar] [CrossRef]
- Yang, J.M.; Tseng, C.M.; Tseng, P.S. Path Planning on Satellite Images for Unmanned Surface Vehicles. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Bayili, S.; Polat, F. Limited-damage A*: A path search algorithm that considers damage as a feasibility criterion. Knowl. Based Syst. 2011, 24, 501–512. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Eng. 2018, 169, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Abu-Tair, M.; Naeem, W. An automatic COLREGs-compliant obstacle avoidance system for an unmanned surface vehicle. J. Eng. Marit. Environ. 2014, 228, 108–121. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, X.M.; Liang, X. Design and Implementation of Global Path Planning System for Unmanned Surface Vehicle among Multiple Task Points. J. Int. J. Veh. Auton. Syst. 2018, 14, 82–105. [Google Scholar] [CrossRef] [Green Version]
- Holland, J. Adaptation in Natural and Artificial Systems. In Applying Genetic Algorithm to Increase the Efficiency of a Data Flow-Based Test Data Generation Approach; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Tsai, C.C.; Huang, H.C.; Chan, C.K. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans. Ind. Electron 2011, 58, 4813–4821. [Google Scholar] [CrossRef]
- Xiao, C.H.; Zou, Y.Y.; Li, S.Y. Path planning of multi–target points for multi UAV in obstacle area. Space Control Technol. Appl. 2019, 45, 46–52. [Google Scholar]
- Yao, Z.; Ma, L. A Static Environment-Based Path Planning Method by Using Genetic Algorithm. In Proceedings of the 2010 International Conference on Computing, Control and Industrial Engineering, Wuhan, China, 5–6 June 2010. [Google Scholar]
- Huang, S.Z.; Tian, J.W.; Qian, L.; Wang, Q.; Su, Y. Unmanned aerial vehicle path planning based on improved genetic algorithm. J. Comput. Appl. 2021, 41, 390–397. [Google Scholar]
- Hao, K.; Zhao, J.L.; Li, Z.S.; Liu, Y.L.; Zhao, L. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm. Ocean Eng. 2022, 263, 112421. [Google Scholar] [CrossRef]
- Hu, G.K.; Zhong, J.H.; Li, Y.Z.; Li, W.H. UAV 3D path planning based on IPSO-GA algorithm. J. Mod. Electron. Tech. 2023, 46, 115–120. [Google Scholar]
- Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Syst. Appl. 2019, 115, 106–120. [Google Scholar] [CrossRef]
- Li, K.R.; Hu, Q.Q.; Liu, J.P. Path planning of mobile robot based on improved multi-objective genetic algorithm Wireless. Commun. Mob. Comput. 2021, 2021, 8836615. [Google Scholar]
- Mcculloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, J.; Wang, Y.; Pan, Q. Autonomous mobile robot path planning in unknown dynamic environments using neural dynamics. Soft Comput. 2020, 24, 13979–13995. [Google Scholar] [CrossRef]
- Praczyk, T. Neural anti-collision system for autonomous surface vehicle. Neurocomputing 2015, 149, 559–572. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, C.; Zhang, L. Deep Convolutional Neural Network Based Unmanned Surface Vehicle Maneuvering. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017. [Google Scholar]
- Liu, Y.; Zheng, Z.; Qin, F.Y.; Zhang, X.Y.; Yao, H.N. A residual convolutional neural network based approach for real-time path planning. Knowl. Based Syst. 2022, 242, 108400. [Google Scholar] [CrossRef]
- Sperduti, A.; Starita, A. Supervised neural networks for the classification of structures. IEEE Trans. Neural Netw. 1997, 8, 714–735. [Google Scholar] [CrossRef] [Green Version]
- Waikhom, L.; Patgiri, R. A survey of graph neural networks in various learning paradigm: Methods, applications, and challenges. Artif. Intell. Rev. 2022, 56, 6295–6364. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017, arXiv:1609.02907. [Google Scholar]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H.F. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Yang, S.X. A Real-Time Cooperative Sweeping Strategy for Multiple Cleaning Robots. In Proceedings of the IEEE Internatinal Symposium on Intelligent Control, Vancouver, BC, Canada, 30–30 October 2002. [Google Scholar]
- Xu, P.F.; Ding, Y.X.; Luo, J.C. Complete Coverage Path Planning of an Unmanned Surface Vehicle Based on a Complete Coverage Neural Network Algorithm. J. Mar. Sci. Eng. 2021, 9, 1163. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Mielniczuk, M. A Method of Artificial Potential Fields for the Determination of Ship’s Safe Trajectory. Sci. J. Marit. Univ. Szczec. 2017, 51, 45–49. [Google Scholar]
- Azmi, M.Z.; Ito, T. Artificial potential field with discrete map transformation for feasible indoor path planning. J. Appl. Sci. 2020, 10, 8987. [Google Scholar] [CrossRef]
- Lazarowska, A. Discrete Artificial Potential Field Approach to Mobile Robot Path Planning. IFAC-PapersOnLine 2019, 52, 277–282. [Google Scholar] [CrossRef]
- Wu, P.; Xie, S.; Luo, J.; Qu, D.; Li, Q. The USV path planning based on the combinatorial algorithm. Rev. Tec. Fac. Ing. Univ. Zulia 2015, 38, 62–70. [Google Scholar]
- He, Z.H.; Chu, X.M.; Liu, C.G.; Wu, W.X. A novel model predictive artificial potential field based ship motion planning method considering COLREGs for complex encounter scenarios. ISA Trans. 2023, 134, 58–73. [Google Scholar] [CrossRef]
- Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Res. Rep. 1998. Available online: https://cir.nii.ac.jp/crid/1573950399665672960 (accessed on 22 May 2023).
- Karaman, S.; Frazzoli, E. Optimal Kinodynamic Motion Planning Using Incremental Sampling-based Methods. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010. [Google Scholar]
- Feng, N. A Path Planning Method for Autonomous Mobile Robot Based on RRT Algorithm; Dalian University of Technology: Dalian, China, 2014. [Google Scholar]
- Jeong, I.B.; Lee, S.J.; Kim, J.H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate. Expert Syst. 2019, 123, 82–90. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. IEEE Int. Conf. Robot. Autom. Symp. Proc. 2000, 2, 995–1002. [Google Scholar]
- Ding, J.; Zhou, Y.X.; Huang, X.; Song, K.; Lu, S.Q.; Wang, L.S. An improved RRT* algorithm for robot path planning based on path expansion heuristic sampling. J. Comput. Sci. 2023, 67, 101937. [Google Scholar] [CrossRef]
- Ma, G.J.; Duan, Y.L.; Li, M.Z.; Xie, Z.B.; Zhu, J. A probability smoothing Bi-RRT path planning algorithm for indoor robot. Future Gener. Comput. Syst. 2023, 143, 349–360. [Google Scholar] [CrossRef]
- Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Autom. Robots 2016, 40, 1079–1093. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhu, T.; Du, L.; Hu, Y.; Liu, H. Local Path Planning of Autonomous Vehicle Based on an Improved Heuristic Bi-RRT Algorithm in Dynamic Obstacle Avoidance Environment. Sensors 2022, 22, 7968. [Google Scholar] [CrossRef]
- Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Zhuang, J.Y.; Zhang, G.C. Obstacle avoidance method for USV. J. Southeast Univ. 2013, 43, 126–130. [Google Scholar]
- Cho, Y.; Han, J.; Kim, J.; Lee, P.; Park, S.B. Experimental validation of a velocity obstacle based collision avoidance algorithm for unmanned surface vehicles. IFAC-PapersOnLine 2019, 52, 329–334. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Lu, D.; Zhou, H.; Tao, T. USV Dynamic Accurate Obstacle Avoidance Based on Improved Velocity Obstacle Method. Electronics 2022, 11, 2720. [Google Scholar] [CrossRef]
- Song, L.F.; Su, Y.R.; Dong, Z.P.; Shen, W.; Xiang, Z.Q.; Mao, P.X. A Two-Level Dynamic Obstacle Avoidance Algorithm for Unmanned Surface Vehicles. J. Ocean Eng. 2018, 170, 351–360. [Google Scholar] [CrossRef]
- Du, K.J.; Mao, Y.S.; Xiang, Z.Q.; Zhou, Y.Q.; Song, L.F.; Liu, B. A dynamic obstacle avoidance method of USV based on COLREGS. J. Ship Eng. 2015, 3, 119–124. (In Chinese) [Google Scholar]
- Bareiss, D.; Berg, V.D. Generalized reciprocal collision avoidance. J. Robot. Res. 2015, 34, 1501–1514. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chen, L.Y.; Gelder, V.P. Generalized velocity obstacle algorithm for preventing ship collisions at sea. J. Ocean Eng. 2019, 173, 142–156. [Google Scholar] [CrossRef]
- Su, Y.M.; Luo, J.; Zhuang, J.Y.; Song, S.Q.; Huang, B.; Zhang, L. A constrained locking sweeping method and velocity obstacle based path planning algorithm for unmanned surface vehicles in complex maritime traffic scenarios. J. Ocean Eng. 2023, 279, 113538. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Brock, O.; Khatib, O. High-Speed Navigation Using the Global Dynamic Window Approach. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999. [Google Scholar]
- Lin, X.G.; Fu, Y. Research of USV Obstacle Avoidance Strategy Based on Dynamic Window. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017. [Google Scholar]
- Yu, X.Y.; Zhu, Y.C.; Lu, L.; Ou, L.L. Dynamic window with virtual goal (DW-VG): A new reactive obstacle avoidance approach based on motion prediction. J. Robot. 2019, 37, 1438–1456. [Google Scholar]
- Zhang, Y.Y.; Qu, D.; Ke, J.; Li, S.M. Dynamic obstacle avoidance of unmanned surface boats based on velocity barrier method and dynamic window method. J. Shanghai Univ. 2017, 23, 1–16. [Google Scholar]
- Wang, N.; Gao, Y.; Zheng, Z.; Zhao, H.; Yin, J. A Hybrid Path-Planning Scheme for an Unmanned Surface Vehicle. In Proceedings of the 2018 Eighth International Conference on Information Science and Technology (ICIST), Cordoba, Granada, and Seville, Spain, 30 June–6 July 2018. [Google Scholar]
- Han, S.; Wang, L.; Wang, Y.T.; He, H.C. A dynamically hybrid path planning for unmanned surface vehicles based on non-uniform Theta* and improved dynamic windows approach. Ocean Eng. 2022, 257, 111655. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Yang, L.; Yang, Z.; Li, P.; Xia, G. Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO–DWA in Unknown Complex Terrain. Electronics 2022, 11, 2144. [Google Scholar] [CrossRef]
- Wang, N.; Jin, X.Z.; Er, J.M. A multilayer path planner for a USV under complex marine environments. Ocean Eng. 2019, 184, 1–10. [Google Scholar] [CrossRef]
- Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 1996, 93, 1591–1595. [Google Scholar] [CrossRef]
- Wang, A.G.; Zhi, P.F.; Zhu, W.L.; Qiu, H.Y.; Wang, H.; Wang, W.R. Path Planning of Unmanned Surface Vehicle Based on a Algorithm Optimization Considering the Influence of Risk Factors. In Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, 10–12 May 2021. [Google Scholar]
- Zhao, W.; Wang, Y.; Zhang, Z.; Wang, H. Multicriteria Ship Route Planning Method Based on Improved Particle Swarm Optimization–Genetic Algorithm. J. Mar. Sci. Eng. 2021, 9, 357. [Google Scholar] [CrossRef]
- Yin, S.; Mao, J.; Li, B. AUV 3D Path Planning Based on Improved Empire Competition Algorithm in Ocean Current Environment. In Proceedings of the 6th International Conference on Computing, Control and Industrial Engineering (CCIE 2021), Hangzhou, China, 15–16 January 2021; pp. 36–49. [Google Scholar]
- Sun, B.; Zhang, W.; Li, S.Q.; Zhu, X.X. Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment. J. Navig. 2022, 75, 685–703. [Google Scholar] [CrossRef]
- Yu, J.B.; Chen, Z.H.; Zhao, Z.Y.; Yao, P.; Xu, J.P. A traversal multi-target path planning method for multi-unmanned surface vessels in space-varying ocean current. Ocean Eng. 2023, 278, 114423. [Google Scholar] [CrossRef]
- Li, B.; Mao, J.; Yin, S.; Fu, L.; Wang, Y. Path Planning of Multi-Objective Underwater Robot Based on Improved Sparrow Search Algorithm in Complex Marine Environment. J. Mar. Sci. Eng. 2022, 10, 1695. [Google Scholar] [CrossRef]
- Zhang, R.B.; Tang, P.P.; Yang, G.; Li, X.Y.; Shi, C.T. Convergence analysis of adaptive hazard avoidance decision process for surface unmanned boats. J. Comput. Res. Dev. 2014, 12, 2644–2652. (In Chinese) [Google Scholar]
- Sivaraj, S.; Rajendran, S.; Prasad, L.P. Data driven control based on deep Q-network algorithm for heading control and path following of a ship in calm water and waves. Ocean Eng. 2022, 259, 111802. [Google Scholar] [CrossRef]
- Rohit, D.R.S.; Sanjeev, K.; Md Shadab, A.; Abhilash, S. Deep reinforcement learning based controller for ship navigation. Ocean Eng. 2023, 273, 113937. [Google Scholar]
- Bhopale, P.; Kazi, F.; Singh, N. Reinforcement learning based obstacle avoidance for autonomous underwater vehicle. J. Mar. Sci. Appl. 2019, 18, 228–238. [Google Scholar] [CrossRef]
- Vibhute, S. Adaptive Dynamic Programming Based Motion Control of Autonomous Underwater Vehicles. In Proceedings of the 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece, 10–13 April 2018; pp. 966–971. [Google Scholar]
- Li, P.J.; Yan, T.W.; Yang, S.T.; Li, R.; Du, J.F.; Qian, F.F.; Liu, Y.T. Energy-optimal Path Planning Algorithm for Unmanned Surface Vessel Based on Reinforcement Learning. J. Unmanned Undersea Syst. 2023, 31, 237–243. (In Chinese) [Google Scholar]
- Huang, Y.M.; Chen, L.Y.; Chen, P.F. Ship collision avoidance methods: State-of-the-art. Saf. Sci. 2020, 121, 451–473. [Google Scholar] [CrossRef]
- Melih, A.; Petter, S.; Tor, A.J. Collaborative collision avoidance for Maritime Autonomous Surface Ships: A review. Ocean Eng. 2022, 250, 110920. [Google Scholar]
- Zhang, X.Y.; Wang, C.B.; Jian, L.L.; An, L.X.; Yang, R. Collision-avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art survey. Ocean Eng. 2021, 235, 109380. [Google Scholar] [CrossRef]
- Zhu, Z.; Lyu, H.; Zhang, J.; Yin, Y. Decision supporting for ship collision avoidance in restricted waters. Int. J. Simul. Process Model. 2020, 15, 40–51. [Google Scholar]
- Dong, J.X. Area Coverage Path Planning of UAV Based on Deep Reinforcement Learning. J. Ind. Control Comput. 2021, 34, 80–82. [Google Scholar]
- Yang, L.; Xing, B.W.; Zhang, Z.Y.; Li, L.H. An Algorithm of Complete Coverage Path Planning Based on Improved DQN. Lect. Notes Electr. Eng. 2022, 845, 3728–3738. [Google Scholar]
- Xing, B.W.; Wang, X.; Yang, L.; Liu, Z.; Wu, Q. An Algorithm of Complete Coverage Path Planning for Unmanned Surface Vehicle Based on Reinforcement Learning. J. Mar. Sci. Eng. 2023, 11, 645. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes, S.C. Ship collision avoidance behaviour recognition and analysis based on AIS data. J. Ocean Eng. 2022, 245, 110479. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q. A Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters Transportation Research. Logist. Transp. Rev. 2019, 129, 287–304. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, L.; Zhao, X.; Shao, B. Research on ship collision avoidance path planning based on modified potential field ant colony algorithm. Ocean Coast. Manag. 2023, 235, 106482. [Google Scholar] [CrossRef]
- Li, M.; Mou, J.; Chen, L.; He, Y.; Huang, Y. A rule-aware time-varying conflict risk measure for MASS considering maritime practice Reliab. J. Eng. Syst. 2021, 215, 107816. [Google Scholar]
- Zhou, X.Y.; Liu, Z.J.; Wang, F.W.; Ni, S.K. Collision Risk Identification of Autonomous Ships Based on the Synergy Ship Domain. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 6746–6752.
- Ning, J.; Chen, H.; Li, T.; Li, W.; Li, C. COLREGs-compliant unmanned surface vehicles collision avoidance based on multi-objective genetic algorithm. IEEE Access 2020, 8, 190367–190377. [Google Scholar] [CrossRef]
- Jin, Q.B.; Tang, C.N.; Cai, W. Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method. IEEE Access 2022, 10, 28322–28332. [Google Scholar] [CrossRef]
- Zhang, C.G.; Xi, Y.G. Robot rolling path planning based on locally detected information. Acta Autom. Sin. 2003, 29, 38–44. [Google Scholar]
- Gao, M.; Tang, H.; Zhang, P. Current status of research on robot cluster path planning technology. J. Natl. Univ. Def. Technol. 2021, 43, 127–138. [Google Scholar]
- Hidalgo-Paniagua, A.; Vega-Rodríguez, M.A.; Ferruz, J.; Pavón, N. Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. J. Soft Comput. 2017, 21, 949–964. [Google Scholar] [CrossRef]
- Su, M.M.; Cheng, Y.M.; Hu, J.W.; Zhao, C.H.; Jia, C.J.; Xu, Z.; Zhang, J.F. Combined optimization of swarm task allocation and path planning based on improved ant colony algorithm. J. Unmanned Syst. Technol. 2021, 4, 40–50. (In Chinese) [Google Scholar]
- Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar] [CrossRef]
- Liang, J.H.; Lee, C.H. Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Adv. Eng. Softw. 2015, 79, 45–56. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report; R. Computers Engineering Department, Engineering Faculty, Erciyes University: Kayseri, Türkiye, 2005. [Google Scholar]
- Liu, Y.; Zhang, X.; Guan, X.; Delahaye, D. Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization. Aerosp. Sci. Technol. 2016, 58, 92–102. [Google Scholar] [CrossRef]
- Gen, Q.; Zhao, Z. A Kind of Route Planning Method for UAV Based on Improved PSO Algorithm. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 2328–2331. [Google Scholar]
- Chen, P.; Shi, G.Y.; Liu, S.; Zhangi, Y.Q. Decision Support Based On Artificial Fish Swarm For Ship Collision Avoidance From Ais Data. In Proceedings of the 2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, China, 15–18 July 2018; pp. 31–36. [Google Scholar]
- Li, X.L.; Shao, Z.J.; Qian, J.X. Optimizing method based on autonomous animats: Fish-swarm algorithm. Syst. Eng. Theory Pract. 2002, 22, 32–38. (In Chinese) [Google Scholar]
- Zhang, Y.; Hua, Y.H. Path planning of mobile robot based on hybrid improved artificial fish swarm algorithm. Vibroeng. Proc. 2018, 17, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhu, B.; Zhou, Y.; Yao, P.; Yu, J. Cooperative Path Planning of Multiple Unmanned Surface Vehicles for Search and Coverage Task. Drones 2023, 7, 21. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Long, Y.; Liu, S.; Qiu, D.; Li, C.; Guo, X.; Shi, B.; AbouOmar, M.S. Local Path Planning with Multiple Constraints for USV Based on Improved Bacterial Foraging Optimization Algorithm. J. Mar. Sci. Eng. 2023, 11, 489. [Google Scholar] [CrossRef]
- Long, Y.; Su, Y.; Shi, B.; Zuo, Z.; Li, J. A multi-subpopulation bacterial foraging optimisation algorithm with deletion and immigration strategies for unmanned surface vehicle path planning. Intell. Serv. Robot. 2021, 14, 303–312. [Google Scholar] [CrossRef]
- Qu, X.Q.; Gan, W.H.; Song, D.L.; Zhou, L.Q. Pursuit-evasion game strategy of USV based on deep reinforcement learning in complex multi-obstacle environment. Ocean Eng. 2023, 273, 114016. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhu, D.Q.; Pang, W.; Zhang, Y.M. A survey of underwater search for multi-target using Multi-AUV: Task allocation, path planning, and formation control. Ocean Eng. 2023, 278, 114393. [Google Scholar] [CrossRef]
- Venturini, F.; Mason, F.; Pase, F.; Testolin, A.; Zanella, A.; Zorzi, M. Distributed reinforcement learning for flexible and efficient UAV swarm control. J. Cogn. Commun. Netw. 2021, 7, 955–968. [Google Scholar] [CrossRef]
- Mou, Z.Y.; Zhang, Y.; Gao, F.F.; Wang, H.G.; Zhang, T.; Han, Z. Deep reinforcement learning based three dimensional area coverage With UAV swarm. IEEE J. Sel. Areas Commun. 2021, 39, 3160–3176. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.X.; Li, L. Mobile robot path planning based on improved deep reinforcement learning. Electron. Meas. Technol. 2021, 44, 19–24. [Google Scholar]
- Shi, Z.; Zhang, Q. Improved Q-Learning Algorithm Based on Pheromone Mechanism for Swarm Robot System. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013. [Google Scholar]
- Zhu, X.M.; Wang, L.L.; Li, Y.M.; Song, S.D.; Ma, S.Y.; Yang, F.; Zhai, L.B. Path planning of multi-UAVs based on deep Q-network for energy-efficient data collection in UAVs-assisted IoT. Veh. Commun. 2022, 36, 100491. [Google Scholar] [CrossRef]
- Liu, Y.C.; Song, R.; Bucknall, R.; Zhang, X.Y. Intelligent multi-task allocation and planning for multiple unmanned surface vehicles (USVs) using self-organising maps and fast marching method. Inf. Sci. 2019, 496, 180–197. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Garrido, S.; Moreno, L.; Blanco, D.; Martin, F. FM2: A Real-Time Fast Marching Sensor-Based Motion Planner. In Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, 4–7 September 2007. [Google Scholar]
- Liu, Z.X.; Zhang, Y.M.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Peng, Y.; Lou, Y.T.; Zhang, K.M. Multi-USV cooperative path planning by window update based self-organizing map and spectral clustering. J. Ocean Eng. 2023, 275, 114140. [Google Scholar]
- Du, P.Z.; Yang, W.C.; Chen, Y.; Huang, S.H. Improved indirect adaptive line-of-sight guidance law for path following of under-actuated AUV subject to big ocean currents. J. Ocean Eng. 2023, 281, 114729. [Google Scholar] [CrossRef]
References | Methods | Length | Smooth | Safety | COLREG | Time | Duplicate | DOA | Efficiency |
---|---|---|---|---|---|---|---|---|---|
[14] | Dijkstra | F | F | F | F | T | F | F | F |
[15,16] | improved Dijkstra | T | F | F | F | T | F | F | T |
[18] | hierachial Dijkstra | T | F | T | T | T | F | F | T |
[20] | 3D-Dijkstra | T | F | T | F | T | F | F | T |
[21,22] | D*Lite | T | F | F | F | T | T | T | T |
[23] | A* | T | F | F | F | T | T | F | T |
[25] | FFA* | T | F | T | F | T | T | T | T |
[26] | LDA* | T | F | T | F | T | F | F | T |
[28,29] | R-RA* | T | T | F | F | T | T | F | T |
[35] | AGA | T | T | F | F | T | F | F | T |
[36] | improved GA | T | T | F | F | T | T | F | T |
[37] | EGA | T | T | T | F | T | F | F | T |
[38] | IMGA | T | T | T | F | T | T | F | T |
[42] | CNN | T | F | T | T | T | F | F | T |
[44] | GNN | T | T | T | F | T | F | F | T |
[46] | GCN | T | T | T | F | T | F | F | T |
[48] | BINN | T | T | T | F | T | F | F | T |
[49] | CINN | T | T | T | F | T | F | T | T |
References | Methods | Length | Smooth | Efficiency | DOA | GOA | COLREG | Real-Time | Optimal |
---|---|---|---|---|---|---|---|---|---|
[35] | VAPF | T | T | T | T | T | F | T | F |
[51] | APF | T | F | F | F | F | F | T | F |
[52] | improved APF | T | T | T | T | T | T | T | F |
[53] | DAPF | T | T | T | T | F | F | T | T |
[54] | APF-ACO | T | T | T | T | T | F | T | T |
[55] | MPAPF | T | T | T | T | F | T | T | T |
[56] | RRT | T | F | T | F | F | F | F | F |
[58] | RRT* | T | T | F | T | F | F | T | F |
[59] | Q-RRT* | T | T | F | T | T | F | T | F |
[60] | RRT-Connect | T | T | T | T | F | F | T | T |
[63] | P-RRT* | T | T | F | T | F | F | F | T |
[64] | improved BI-RRT | T | T | T | T | T | F | T | T |
[61] | PSBI-RRT | T | T | T | T | T | F | T | F |
[66] | VO | T | F | F | T | T | T | F | F |
[68] | improved VO | T | T | T | T | T | T | T | F |
[69] | VO-APF | T | F | T | T | F | T | T | F |
[70] | VO-ACO | T | T | T | T | F | T | T | T |
[72] | GVO-CAS | T | T | T | T | F | T | T | F |
[73] | CLSM-VO | T | T | T | T | T | T | T | F |
[76] | DWA | F | F | T | T | F | F | T | F |
[79] | DWA-A* | T | T | T | T | F | T | T | F |
[78] | DWA-VO | T | T | T | T | T | T | T | F |
[80] | IDWA | T | T | T | T | F | F | T | T |
[81] | DWA-ACO | T | T | T | T | T | F | T | T |
Reference | Method | Efficiency | DOA | COLREG | Real-Time | AIS | Wind | Current | Dynamics |
---|---|---|---|---|---|---|---|---|---|
[82] | MPP | F | T | F | T | F | F | F | F |
[84] | GA-APF | T | F | T | T | F | F | F | F |
[85] | PSO-GA | T | T | T | T | F | T | F | F |
[86] | ICA | T | T | T | T | F | T | T | T |
[89] | SSA | T | T | T | T | F | T | T | T |
[87] | improved D* | T | T | T | F | F | T | T | T |
[88] | VF-RRT* | T | T | T | T | F | T | T | T |
[91] | DQN | T | F | F | T | F | F | F | T |
[92] | IDQN | T | T | F | T | F | T | F | T |
[90] | RL | F | F | T | T | F | F | F | F |
[93] | Q-NN | T | F | F | T | F | T | F | T |
[95] | DRL | T | F | F | T | F | T | T | T |
[102] | CCPP | T | T | F | T | F | T | T | T |
[103] | SWA | T | F | T | F | T | F | F | T |
[105] | ACO-APF | T | T | T | T | T | F | F | T |
[107] | SSD | F | T | T | T | T | F | F | T |
[108] | MODM-CGA | T | T | F | T | T | F | F | F |
[109] | ACO-RWM | T | T | T | T | F | F | F | T |
References | Methods | Mass | Efficiency | Convergence | COLREG | Real-Time | Muti | Environment |
---|---|---|---|---|---|---|---|---|
[112] | FA | T | T | T | F | F | T | F |
[113] | ACO | F | T | F | F | F | F | T |
[115] | EABC | T | T | T | F | T | F | F |
[117] | improved PSO | T | T | T | F | T | T | F |
[119] | AFSA | F | T | T | F | T | F | F |
[121] | HIAFSA | T | T | T | F | T | T | F |
[123] | SSA | T | T | T | F | T | T | F |
[124] | SA-BFO | T | T | T | T | T | T | F |
[128] | RL | T | T | T | F | F | T | T |
[130] | HER-DQN | T | T | T | F | T | F | F |
[132] | HAS-DQN | T | T | T | F | T | F | F |
[133] | improved SOM | F | T | T | F | T | T | T |
[137] | SOM-SC | T | T | T | F | T | T | T |
Characteristics | Global Path Planning Strategy | Local Path Planning Strategy |
---|---|---|
Information | known and all | sensor acquisition |
Function | global optimization search | local optimization search |
Calculation volume | complex and slow | simple and quick |
Application scenario | static environments | dynamic environments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, B.; Yu, M.; Liu, Z.; Tan, Y.; Sun, Y.; Li, B. A Review of Path Planning for Unmanned Surface Vehicles. J. Mar. Sci. Eng. 2023, 11, 1556. https://doi.org/10.3390/jmse11081556
Xing B, Yu M, Liu Z, Tan Y, Sun Y, Li B. A Review of Path Planning for Unmanned Surface Vehicles. Journal of Marine Science and Engineering. 2023; 11(8):1556. https://doi.org/10.3390/jmse11081556
Chicago/Turabian StyleXing, Bowen, Manjiang Yu, Zhenchong Liu, Yinchao Tan, Yue Sun, and Bing Li. 2023. "A Review of Path Planning for Unmanned Surface Vehicles" Journal of Marine Science and Engineering 11, no. 8: 1556. https://doi.org/10.3390/jmse11081556
APA StyleXing, B., Yu, M., Liu, Z., Tan, Y., Sun, Y., & Li, B. (2023). A Review of Path Planning for Unmanned Surface Vehicles. Journal of Marine Science and Engineering, 11(8), 1556. https://doi.org/10.3390/jmse11081556