Scenario-Based Hazard Assessment of Local Tsunami for Coastal Areas: A Case Study of Xiamen City, Fujian Province, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Design of the Earthquake Scenarios
3.2.2. Tsunami Numerical Model
4. Results
4.1. Characteristics of Tsunami Wave Generation and Propagation
4.2. Spatial Distribution of the Maximum Amplitude
4.3. Tsunami Hazard Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smit, A.; Kijko, A.; Stein, A. Probabilistic tsunami hazard assessment from incomplete and uncertain historical catalogues with application to tsunamigenic regions in the Pacific Ocean. Pure Appl. Geophys. 2017, 174, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Ruffini, G.; Heller, V.; Chen, S. A numerical landslide-tsunami hazard assessment technique applied on hypothetical scenarios at Es Vedrà, Offshore Ibiza. J. Mar. Sci. Eng. 2018, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Dolgikh, G.; Dolgikh, S.; Ovcharenko, V. Initiation of infrasonic geosphere waves caused by explosive eruption of Hunga Tonga-Hunga Haʻapai Volcano. J. Mar. Sci. Eng. 2022, 10, 1061. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Kong, H.; Wong, C.S. Tsunamis in Lingding Bay, China, caused by the 2022 Tonga volcanic eruption. Geophys. J. Int. 2022, 232, 2175–2185. [Google Scholar] [CrossRef]
- Reid, J.A.; Mooney, W.D. Tsunami occurrence 1900–2020: A global review, with examples from Indonesia. Pure Appl. Geophys. 2023, 180, 1549–1571. [Google Scholar] [CrossRef]
- Lay, T.; Kanamori, H.; Ammon, C.J.; Nettles, M.; Ward, S.N.; Aster, R.C.; Beck, S.L.; Bilek, S.L.; Brudzinski, M.R.; Butler, R. The great Sumatra-Andaman earthquake of 26 December 2004. Science 2005, 308, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Tinh, N.X.; Umeda, M.; Hirao, R.; Pradjoko, E.; Mano, A.; Udo, K. Coastal and estuarine morphology changes induced by the 2011 Great East Japan Earthquake Tsunami. Coast. Eng. J. 2012, 54, 547–562. [Google Scholar] [CrossRef]
- Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D.H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S.D.; Thio, H.K. A probabilistic tsunami hazard assessment for Indonesia. Nat. Hazards Earth Syst. Sci. 2014, 14, 3105–3122. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, Y.; Wen, R.; Wang, H. Probabilistic tsunami hazard assessment for the Southeast Coast of China: Consideration of both regional and local potential sources. Pure Appl. Geophys. 2021, 178, 5061–5084. [Google Scholar] [CrossRef]
- Tonini, R.; Armigliato, A.; Pagnoni, G.; Zaniboni, F.; Tinti, S. Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA). Nat. Hazards Earth Syst. Sci. 2011, 11, 1217–1232. [Google Scholar] [CrossRef] [Green Version]
- Løvholt, F.; Glimsdal, S.; Harbitz, C.B.; Horspool, N.; Smebye, H.; De Bono, A.; Nadim, F. Global tsunami hazard and exposure due to large co-seismic slip. Int. J. Disaster Risk Reduct. 2014, 10, 406–418. [Google Scholar] [CrossRef]
- Al-Habsi, Z.; Hereher, M.; El-Hussain, I.; Omira, R.; Ana Baptista, M.; Deif, A.; Al-Awadhi, T.; Al-Nasiri, N. Tsunami hazard and risk zoning for Qurayyat in northeast Oman coast: Worst-case credible scenarios along the Makran Subduction Zone, Western Asia. J. Asian Earth Sci. X 2022, 8, 100103. [Google Scholar] [CrossRef]
- Santos, A.; Fernandes, J.; Mileu, N. Tsunami hazard assessment at Oeiras Municipality, Portugal. J. Mar. Sci. Eng. 2022, 10, 1120. [Google Scholar] [CrossRef]
- Fan, T.; Hou, J.; Xu, Z.; Wang, Y.; Zhao, L.; Gao, Y.; Wang, P. Investigation of local tsunami effect on coastal areas: A case study of Putian City, Fujian Province, China. Sustainability 2023, 15, 415. [Google Scholar] [CrossRef]
- Ren, Z.; Gao, Y.; Ji, X.; Hou, J. Deterministic tsunami hazard assessment and zoning approach using far-field and near-field sources: Study of Cixi County of Zhejiang Province, China. Ocean Eng. 2022, 247, 110487. [Google Scholar] [CrossRef]
- Hou, J.; Li, X.; Yuan, Y.; Wang, P. Tsunami hazard assessment along the Chinese mainland coast from earthquakes in the Taiwan region. Nat. Hazards 2016, 81, 1269–1281. [Google Scholar] [CrossRef]
- Feng, X.; Yin, B.; Gao, S.; Wang, P.; Bai, T.; Yang, D. Assessment of tsunami hazard for coastal areas of Shandong Province, China. Appl. Ocean Res. 2017, 62, 37–48. [Google Scholar] [CrossRef]
- Hou, J.; Yuan, Y.; Li, T.; Ren, Z. Tsunami hazard analysis for Chinese coast from potential earthquakes in the western North Pacific. Geomat. Nat. Hazards Risk 2020, 11, 967–983. [Google Scholar] [CrossRef]
- Hui, C.; Ning, L.; Cheng, C. Risk assessment of tsunamis along the Chinese coast due to earthquakes. Int. J. Disaster Risk Sci. 2022, 13, 275–290. [Google Scholar] [CrossRef]
- Li, L.; Qiu, Q.; Li, Z.; Zhang, P. Tsunami hazard assessment in the South China Sea: A review of recent progress and research gaps. Sci. China Earth Sci. 2022, 65, 783–809. [Google Scholar] [CrossRef]
- Pan, W.; Wang, S.; Cai, S. Simulation of potential tsunami hazards in the South China Sea. J. Trop. Ocean. 2009, 28, 7–14. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, X.; Wang, B.; Dias, F.; Liu, H. Characteristics of wave amplitude and currents in South China Sea induced by a virtual extreme tsunami. J. Hydrodyn. 2017, 29, 377–392. [Google Scholar] [CrossRef]
- Qiu, Q.; Li, L.; Hsu, Y.J.; Wang, Y.; Chan, C.H.; Switzer, A.D. Revised earthquake sources along Manila trench for tsunami hazard assessment in the South China Sea. Nat. Hazards Earth Syst. Sci. 2019, 19, 1565–1583. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Jing, H.; Hu, P. Study on the potential tsunami hazard of adjacent trenches in the southeast coast of China. Mar. Environ. Sci. 2019, 38, 594–601. (In Chinese) [Google Scholar] [CrossRef]
- Ma, F.; Zhao, G.; Gao, X.; Niu, X. Spatial distribution of tsunami hazard posed by earthquakes along the Manila Trench. J. Mar. Sci. Eng. 2022, 10, 1449. [Google Scholar] [CrossRef]
- Ren, Y.; Wen, R.; Song, Y. Recent progress of tsunami hazard mitigation in China. Epis. J. Int. Geosci. 2014, 37, 277–283. [Google Scholar] [CrossRef]
- Ren, Y.; Wen, R.; Zhang, P.; Yang, Z.; Pan, R.; Li, X. Implications of local sources to probabilistic tsunami hazard analysis in south Chinese coastal area. J. Earthq. Tsunami 2017, 11, 1740001. [Google Scholar] [CrossRef]
- Mak, S.; Chan, L.S. Historical tsunamis in South China. Nat. Hazards 2007, 43, 147–164. [Google Scholar] [CrossRef]
- Peng, C.; Li, Y.; Wu, M. Analysis of seismogenic structure mechanism of the Nanao earthquake in 1918. South China J. Seismol. 2017, 37, 1–14. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Qiu, Q.; Li, Z.; Zhang, D.; Hui, G. Tsunami simulation of the 1918 Nan’ao earthquake and its implication. Acta Sci. Nat. Univ. Sunyatseni 2022, 61, 27–38. [Google Scholar] [CrossRef]
- Blaser, L.; Krüger, F.; Ohrnberger, M.; Scherbaum, F. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull. Seismol. Soc. Am. 2010, 100, 2914–2926. [Google Scholar] [CrossRef]
- Aki, K. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull. Earthq. Res. Inst. Tokyo Univ. 1966, 44, 73–88. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Takabatake, T.; St-Germain, P.; Nistor, I.; Stolle, J.; Shibayama, T. Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada. Nat. Hazards 2019, 98, 267–291. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, H.; Zhao, X.; Wang, B.; An, C. Effect of kinematic fault rupture process on tsunami propagation. Ocean Eng. 2019, 181, 43–58. [Google Scholar] [CrossRef]
- Riquelme, S.; Schwarze, H.; Fuentes, M.; Campos, J. Near-field effects of earthquake rupture velocity into tsunami runup heights. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018946. [Google Scholar] [CrossRef]
- LeVeque, R.J.; George, D.L.; Berger, M.J. Tsunami modelling with adaptively refined finite volume methods. Acta Numer. 2011, 20, 211–289. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- HY/T 0273.3-2021; Technical Directives for Risk Assessment and Zoning of Marine Disaster-Part 3: Tsunami. Standards Press of China: Beijing, China, 2021.
- Hou, J.; Yu, F.; Wang, P. Numerical study on tsunami inundation for the urban area of Shantou City. Mar. Forecast. 2014, 31, 1–8. [Google Scholar] [CrossRef]
- Mao, X.; Zhu, Q.; Wei, Y. Risk analysis of potential regional earthquake tsunami on the coast of Zhejiang Province. Haiyang Xuebao 2015, 37, 37–45. [Google Scholar] [CrossRef]
- Satake, K.; Ishibe, T.; Murotani, S.; Mulia, I.E.; Gusman, A.R. Effects of uncertainty in fault parameters on deterministic tsunami hazard assessment: Examples for active faults along the eastern margin of the Sea of Japan. Earth Planets Space 2022, 74, 36. [Google Scholar] [CrossRef]
- Windupranata, W.; Hanifa, N.R.; Nusantara, C.A.D.S.; Aristawati, G.; Arifianto, M.R. Analysis of tsunami hazard in the southern coast of West Java Province-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 618, 012026. [Google Scholar] [CrossRef]
- Hassan, H.M.; Frischknecht, C.; ElGabry, M.N.; Hussein, H.; ElWazir, M. Tsunami hazard and risk assessment for Alexandria (Egypt) based on the maximum credible earthquake. J. Afr. Earth Sci. 2020, 162, 103735. [Google Scholar] [CrossRef]
- Ren, Z.; Hou, J.; Wang, P.; Li, T.; Yuan, Y.; Zhao, L. Study and application of the refined tsunami real time warning system including tsunamigenic wave and current. Haiyang Xuebao 2019, 41, 145–155. [Google Scholar]
- Cienfuegos, R.; Catalán, P.A.; Urrutia, A.; Benavente, R.; Aránguiz, R.; González, G. What can we do to forecast tsunami hazards in the near field given large epistemic uncertainty in rapid seismic source inversions? Geophys. Res. Lett. 2018, 45, 4944–4955. [Google Scholar] [CrossRef]
- Sheehan, A.F.; Gusman, A.R.; Heidarzadeh, M.; Satake, K. Array observations of the 2012 Haida Gwaii tsunami using Cascadia Initiative absolute and differential seafloor pressure gauges. Seismol. Res. Lett. 2015, 86, 1278–1286. [Google Scholar] [CrossRef]
- Tsushima, H.; Hino, R.; Fujimoto, H.; Tanioka, Y.; Imamura, F. Near-field tsunami forecasting from cabled ocean bottom pressure data. J. Geophys. Res. Solid Earth 2009, 114, B06309. [Google Scholar] [CrossRef]
- Maeda, T.; Obara, K.; Shinohara, M.; Kanazawa, T.; Uehira, K. Successive estimation of a tsunami wavefield without earthquake source data: A data assimilation approach toward real-time tsunami forecasting. Geophys. Res. Lett. 2015, 42, 7923–7932. [Google Scholar] [CrossRef]
- Wang, Y.; Tsushima, H.; Satake, K.; Navarrete, P. Review on recent progress in near-field tsunami forecasting using offshore tsunami measurements: Source inversion and data assimilation. Pure Appl. Geophys. 2021, 178, 5109–5128. [Google Scholar] [CrossRef]
- González, F.I.; Bernard, E.N.; Meinig, C.; Eble, M.C.; Mofjeld, H.O.; Stalin, S. The NTHMP Tsunameter Network. Nat. Hazards 2005, 35, 25–39. [Google Scholar] [CrossRef]
- Mulia, I.E.; Satake, K. Developments of tsunami observing systems in Japan. Front. Earth Sci. 2020, 8, 145. [Google Scholar] [CrossRef]
- Xie, X.; Chen, C.; Li, L.; Wu, S.; Yuen, D.A.; Wang, D. Tsunami hazard assessment for atoll islands inside the South China Sea: A case study of the Xisha Archipelago. Phys. Earth Planet. Inter. 2019, 290, 20–35. [Google Scholar] [CrossRef]
- Lotfollahi-Yaghin, M.A.; Nassiraei, H. Numerical simulation of tsunami waves forces on coastal structures. J. Oceanogr. 2016, 6, 23–30. [Google Scholar]
- Nassiraei, H.; Heidarzadeh, M.; Shafieefar, M. Numerical simulation of long waves (tsunami) forces on caisson breakwaters. Sharif J. Civ. Eng. 2016, 32, 3–12. [Google Scholar]
Name | Type | Coordinates | Resolution |
---|---|---|---|
GEBCO_2022 | Bathymetric data | Geographic | 15 arc second (~460 m) |
ASTER GDEM V3 | Topographic data | Geographic | 1 arc second (~30 m) |
Notation | Definition |
---|---|
Mw | Seismic moment magnitude |
L | Length of the fault plane |
W | Width of the fault plane |
M0 | Seismic moment |
D | Average coseismic slip |
μ | Shear rigidity of the Earth’s crust |
t | Time |
h | Total water depth |
b | Bottom elevation function |
u | Depth-averaged velocities in x directions |
v | Depth-averaged velocities in y directions |
g | Gravity acceleration |
n | Manning coefficient |
τx | Bottom friction terms in x directions |
τy | Bottom friction terms in y directions |
Scenario | Location | Mw | Length (km) | Width (km) | Strike (°) | Dip (°) | Rake (°) | Depth (km) | Slip (m) |
---|---|---|---|---|---|---|---|---|---|
S1 | XF 1 | 8.0 | 155 | 66 | 58 | 60 | 90 | 20 | 3.13 |
S2 | XF 2 | 8.0 | 155 | 66 | 57 | 60 | 90 | 20 | 3.13 |
S3 | XF 3 | 8.0 | 155 | 66 | 53 | 60 | 90 | 20 | 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Qi, W.; Xu, C. Scenario-Based Hazard Assessment of Local Tsunami for Coastal Areas: A Case Study of Xiamen City, Fujian Province, China. J. Mar. Sci. Eng. 2023, 11, 1501. https://doi.org/10.3390/jmse11081501
Chen Z, Qi W, Xu C. Scenario-Based Hazard Assessment of Local Tsunami for Coastal Areas: A Case Study of Xiamen City, Fujian Province, China. Journal of Marine Science and Engineering. 2023; 11(8):1501. https://doi.org/10.3390/jmse11081501
Chicago/Turabian StyleChen, Zhaoning, Wenwen Qi, and Chong Xu. 2023. "Scenario-Based Hazard Assessment of Local Tsunami for Coastal Areas: A Case Study of Xiamen City, Fujian Province, China" Journal of Marine Science and Engineering 11, no. 8: 1501. https://doi.org/10.3390/jmse11081501
APA StyleChen, Z., Qi, W., & Xu, C. (2023). Scenario-Based Hazard Assessment of Local Tsunami for Coastal Areas: A Case Study of Xiamen City, Fujian Province, China. Journal of Marine Science and Engineering, 11(8), 1501. https://doi.org/10.3390/jmse11081501