A Multi-Resolution MPS/FEM Coupling Method for Three-Dimensional Fluid–Structure Interaction Analysis
Abstract
:1. Introduction
2. Explicit MPS Method
3. Multi-Resolution MPS Method
3.1. Multi-Resolution Formulations
- (1)
- When , i.e., for scenarios (a), (b), and (c), the kernel function can be expressed as:
- (2)
- When , i.e., for scenario (d), the coarse particle j will be divided into small virtual particles, where there are four virtual particles in two dimensions (see Figure 2 (d)), and eight virtual particles in three dimensions, hypothetically. The coordinates of the eight small virtual particles in the 3D problem are , where vir = 1, 2, …8.
- (1)
- When , i.e., for scenarios (a), (b), and (c), the expressions are given as:
- (2)
- When , i.e., for scenario (d), the two terms are rewritten as:
3.2. Improved Bucket Sort Algorithm
- (1)
- Domain decomposition. In this step, the domain to be solved is decomposed into a series of cells; see the rectangular cells (C1 to C9) with purple lines in Figure 3. A common treatment in the traditional MPS method is to set the cell size to be equal to the effective radius re for convenience. In the present work, the cell size is set to be the maximum effective radius, i.e., remax = klmax, where k = 2.9 and lmax is the largest particle spacing in the simulation model.
- (2)
- Particle positioning. The purpose of this step is to map all the particles into the decomposed cells according to their positions, and the mapped particles within each cell are recorded.
- (3)
- Potential pairs. The aim of this step is to find all the potential particles that fall within the influence domain of a given particle. This is achieved by looping over the decomposed cells, and performing distance judgments for each particle in a given cell with other particles in the same cell and neighboring cells. Take particle i in cell C5 as an example. If lj > li, the influence radius of particle i is klj (see the green circle in Figure 3). In this case, particles i and j will be treated as a potential pair when Equation (24) is satisfied. However, the influence radius becomes kli (see the red circle in Figure 3) when lj ≤ li, and particles i and j will be treated as a potential pair if Equation (25) is satisfied. In this case, all the neighbor particles of i are found.
4. Multi-Resolution MPS/FEM Coupling Method
4.1. Improved Boundary Model
- (1)
- When li ≥ lc, i.e., for scenarios (a), (b), and (c) in Figure 4, the expression for the kernel function can be expressed as:
- (2)
- When li < lc, a given large cell will be divided into several small cells, with four small cells in two dimensions (see scenario (d) in Figure 4) and eight small cells in three dimensions, hypothetically. The coordinates of these small ghost cells in a 3D problem are , where vir = 1, 2, …8. In this case, the kernel function is written as:
- (1)
- When li ≥ lc:
- (2)
- When li < lc:
4.2. Coupling of Multi-Resolution MPS and FEM
5. Numerical Examples
5.1. Hydrostatic Problem
5.2. Water Entry Problem
5.3. Dam Break with an Elastic Obstacle
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Korobenko, A.; Yan, J.; Gohari, S.; Sarkar, S.; Bazilevs, Y. FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput. Fluids 2017, 158, 167–175. [Google Scholar] [CrossRef]
- Young, Y.L. Fluid-structure interaction analysis of flexible composite marine propellers. J. Fluids Struct. 2008, 24, 799–818. [Google Scholar] [CrossRef]
- Tian, F.B.; Dai, H.; Luo, H.; Doyle, J.F.; Rousseau, B. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 2014, 258, 451–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazilevs, Y.; Takizawa, K.; Tezduyar, T.E. Computational Fluid-Structure Interaction: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Axisa, F.; Antunes, J. Modelling of Mechanical Systems: Fluid-Structure Interaction; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3. [Google Scholar]
- Espinosa, H.D.; Lee, S.; Moldovan, N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp. Mech. 2006, 46, 805–824. [Google Scholar] [CrossRef]
- Fossa, M.; Rizzo, C.M.; Tani, G.; Viviani, M. Simulations of a sloshing experiment by FEM CFD and FEM FSI approaches. In The Twenty-second International Offshore and Polar Engineering Conference; International Society of Offshore and Polar Engineers: Mountain View, CA, USA, 2012; pp. 530–537. [Google Scholar]
- Zhang, L.; Guo, Y.; Wang, W. FEM simulation of turbulent flow in a turbine blade passage with dynamical fluid-structure interaction. Int. J. Numer. Methods Fluids 2009, 61, 1299–1330. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Young, J.; Lai, J.C.; Sui, Y.; Tian, F.B. An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries. J. Comput. Phys. 2020, 415, 109487. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, Y.; Wang, Z.; Wang, R.; Wu, C.; Chen, J.; Tong, J. Numerical simulation for deformation characteristic of tea shoot under negative pressure guidance by the immersed boundary–lattice Boltzmann method. J. Comput. Sci. 2022, 65, 101882. [Google Scholar] [CrossRef]
- Hui, D.; Wang, Z.; Cai, Y.; Wu, W.; Zhang, G.; Liu, M. An immersed boundary-lattice Boltzmann method with hybrid multiple relaxation times for viscoplastic fluid-structure interaction problems. Appl. Ocean Res. 2022, 119, 103023. [Google Scholar] [CrossRef]
- Khayyer, A.; Gotoh, H.; Falahaty, H.; Shimizu, Y. An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 2018, 232, 139–164. [Google Scholar] [CrossRef]
- Han, L.; Hu, X. SPH modeling of fluid-structure interaction. J. Hydrodyn. 2018, 30, 62–69. [Google Scholar] [CrossRef]
- Antoci, C.; Gallati, M.; Sibilla, S. Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 2007, 85, 879–890. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; He, F.; Liu, M. Numerical investigation on the water entry of a 3D circular cylinder based on a GPU-accelerated SPH method. Eur. J. Mech.-B/Fluids 2022, 94, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Shu, C.; Khalid, M.S.U.; Yuan, Z.; Liu, W. Investigations on the hydroelastic slamming of deformable wedges by using the smoothed particle element method. J. Fluids Struct. 2022, 114, 103732. [Google Scholar] [CrossRef]
- Koshizuka, S.; Oka, Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 1996, 123, 421–434. [Google Scholar] [CrossRef]
- Zheng, Z.; Duan, G.; Mitsume, N.; Chen, S.; Yoshimura, S. A novel ghost cell boundary model for the explicit moving particle simulation method in two dimensions. Comput. Mech. 2020, 66, 87–102. [Google Scholar] [CrossRef]
- Hwang, S.C.; Khayyer, A.; Gotoh, H.; Park, J.C. Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems. J. Fluids Struct. 2014, 50, 497–511. [Google Scholar] [CrossRef]
- Mitsume, N.; Yoshimura, S.; Murotani, K.; Yamada, T. MPS-FEM partitioned coupling approach for fluid-structure interaction with free surface flow. Int. J. Comput. Methods 2014, 11, 1350101. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, D. MPS-FEM coupled method for sloshing flows in an elastic tank. Ocean Eng. 2018, 152, 416–427. [Google Scholar] [CrossRef]
- Rao, C.; Wan, D. Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method. J. Hydrodyn. 2018, 30, 70–78. [Google Scholar] [CrossRef]
- Zheng, Z.; Duan, G.; Mitsume, N.; Chen, S.; Yoshimura, S. An explicit MPS/FEM coupling algorithm for three-dimensional fluid-structure interaction analysis. Eng. Anal. Bound. Elem. 2020, 121, 192–206. [Google Scholar] [CrossRef]
- Zhang, G.; Zha, R.; Wan, D. MPS-FEM coupled method for 3D dam-break flows with elastic gate structures. Eur. J. Mech.-B/Fluids 2022, 94, 171–189. [Google Scholar] [CrossRef]
- Long, T.; Hu, D.; Wan, D.; Zhuang, C.; Yang, G. An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems. J. Comput. Phys. 2017, 350, 166–183. [Google Scholar] [CrossRef]
- Yang, Q.; Jones, V.; McCue, L. Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng. 2012, 55, 136–147. [Google Scholar] [CrossRef]
- Shakibaeinia, A.; Jin, Y.C. A weakly compressible MPS method for modeling of open-boundary free-surface flow. International J. Numer. Methods Fluids 2010, 63, 1208–1232. [Google Scholar] [CrossRef]
- Nabian, M.A.; Farhadi, L. MR-WC-MPS: A multi-resolution WC-MPS method for simulation of free-surface flows. Water 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Shibata, K.; Koshizuka, S.; Matsunaga, T.; Masaie, I. The overlapping particle technique for multi-resolution simulation of particle methods. Comput. Methods Appl. Mech. Eng. 2017, 325, 434–462. [Google Scholar] [CrossRef]
- Mitsume, N.; Yamada, T.; Yoshimura, S. Parallel analysis system for free-surface flow using MPS method with explicitly represented polygon wall boundary model. Comput. Part. Mech. 2020, 7, 279–290. [Google Scholar] [CrossRef]
- Murotani, K.; Koshizuka, S.; Tamai, T.; Shibata, K.; Mitsume, N.; Yoshimura, S.; Tanaka, S.; Hasegawa, K.; Nagai, E.; Fujisawa, T. Development of hierarchical domain decomposition explicit MPS method and application to large-scale tsunami analysis with floating objects. J. Adv. Simul. Sci. Eng. 2014, 1, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zang, M.; Chen, S.; Zeng, H. A GPU-based DEM-FEM computational framework for tire-sand interaction simulations. Comput. Struct. 2018, 209, 74–92. [Google Scholar] [CrossRef]
- Wen, X.; Chen, X.; Wan, D. Numerical simulation of multi-layer-liquid sloshing by multiphase MPS-GPU method. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84409, p. V008T08A002. [Google Scholar]
- Basit, M.A.; Tian, W.; Chen, R.; Basit, R.; Qiu, S.; Su, G. Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU. Nucl. Eng. Technol. 2021, 53, 1810–1820. [Google Scholar] [CrossRef]
- Feldman, J.; Bonet, J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 2007, 72, 295–324. [Google Scholar] [CrossRef]
- Reyes L´opez, Y.; Roose, D.; Recarey Morfa, C. Dynamic particle refinement in SPH: Application to free surface flow and non-cohesive soil simulations. Comput. Mech. 2013, 51, 731–741. [Google Scholar] [CrossRef]
- Vacondio, R.; Rogers, B.; Stansby, P.K.; Mignosa, P.; Feldman, J. Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Comput. Methods Appl. Mech. Eng. 2013, 256, 132–148. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Z.G.; Liu, L.; Xi, G. Improved MPS method with variable-size particles. Int. J. Numer. Methods Fluids 2016, 80, 358–374. [Google Scholar] [CrossRef]
- Barcarolo, D.A.; Le Touz´e, D.; Oger, G.; De Vuyst, F. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method. J. Comput. Phys. 2014, 273, 640–657. [Google Scholar] [CrossRef]
- Hu, L.; HongFu, Q.; FuZhen, C.; Chao, S. A particle refinement scheme with hybrid particle interacting technique for multi-resolution SPH. Eng. Anal. Bound. Elem. 2020, 118, 108–123. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, A.M.; Marrone, S.; Ming, F. An accurate and efficient SPH modeling of the water entry of circular cylinders. Appl. Ocean Res. 2018, 72, 60–75. [Google Scholar] [CrossRef]
- Sun, P.N.; Le Touze, D.; Oger, G.; Zhang, A.M. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Eng. 2021, 221, 108552. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, Y.J.; Sun, Z.G.; Wang, F.; Chen, X.; Xi, G. An efficient MPS refined technique with adaptive variable-size particles. Eng. Anal. Bound. Elem. 2022, 143, 663–676. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Zhang, Y.L.; Wan, D.C. Numerical simulation of 3D free surface flows by overlapping MPS. J. Hydrodyn. Ser B 2016, 28, 306–312. [Google Scholar] [CrossRef]
- Chiron, L.; Oger, G.; De Leffe, M.; Le Touz´e, D. Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations. J. Comput. Phys. 2018, 354, 552–575. [Google Scholar] [CrossRef]
- Yamada, D.; Imatani, T.; Shibata, K.; Maniwa, K.; Obara, S.; Negishi, H. Application of improved multiresolution technique for the MPS method to fluid lubrication. Comput. Part. Mech. 2022, 9, 421–441. [Google Scholar] [CrossRef]
- Lastiwka, M.; Basa, M.; Quinlan, N.J. Permeable and non-reflecting boundary conditions in SPH. Int. J. Numer. Methods Fluids 2009, 61, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P. Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys. 2006, 213, 803–822. [Google Scholar] [CrossRef]
- Shibata, K.; Koshizuka, S.; Masaie, I. Cost reduction of particle simulations by an ellipsoidal particle model. Comput. Methods Appl. Mech. Eng. 2016, 307, 411–450. [Google Scholar] [CrossRef]
- Omidvar, P.; Stansby, P.K.; Rogers, B.D. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. Int. J. Numer. Methods Fluids 2012, 68, 686–705. [Google Scholar] [CrossRef]
- Tang, Z.; Wan, D.; Chen, G.; Xiao, Q. Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method. J. Ocean Eng. Mar. Energy 2016, 2, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Mitsume, N.; Yoshimura, S.; Murotani, K.; Yamada, T. Improved MPS-FE fluidstructure interaction coupled method with MPS polygon wall boundary model. CMES-Comput. Model. Eng. Sci. 2014, 101, 229–247. [Google Scholar]
- Fourey, G.; Hermange, C.; Le Touz´e, D.; Oger, G. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput. Phys. Commun. 2017, 217, 66–81. [Google Scholar] [CrossRef]
- Khayyer, A.; Shimizu, Y.; Gotoh, H.; Hattori, S. Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering. Ocean Eng. 2021, 226, 108652. [Google Scholar] [CrossRef]
- Khayyer, A.; Gotoh, H.; Shimizu, Y.; Nishijima, Y.; Nakano, A. 3D MPS-MPS coupled FSI solver for simulation of hydroelastic fluid-structure interactions in coastal engineering. J. Jpn. Soc. Civ. Eng. Ser B2 (Coast. Eng.) 2020, 76, 37–42. [Google Scholar] [CrossRef]
- Khayyer, A.; Tsuruta, N.; Shimizu, Y.; Gotoh, H. Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Appl. Ocean Res. 2019, 82, 397–414. [Google Scholar] [CrossRef]
- Zhang, C.; Rezavand, M.; Hu, X. A multi-resolution SPH method for fluid-structure interactions. J. Comput. Phys. 2021, 429, 110028. [Google Scholar] [CrossRef]
- Sun, Y.; Xi, G.; Sun, Z. A generic smoothed wall boundary in multi-resolution particle method for fluid-structure interaction problem. Comput. Methods Appl. Mech. Eng. 2021, 378, 113726. [Google Scholar] [CrossRef]
- Chen, C.; Shi, W.K.; Shen, Y.M.; Chen, J.Q.; Zhang, A.M. A multi-resolution SPH-FEM method for fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 2022, 401, 115659. [Google Scholar] [CrossRef]
- Akimoto, H. Numerical simulation of the flow around a planing body by MPS method. Ocean Eng. 2013, 64, 72–79. [Google Scholar] [CrossRef]
- Long, T.; Zhang, Z.; Liu, M. Multi-resolution technique integrated with smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with free surfaces. Sci. China Phys. Mech. Astron. 2021, 64, 284711. [Google Scholar] [CrossRef]
- Wang, Z.; Sugiyama, T.; Matsunaga, T.; Koshizuka, S. A multi-resolution particle method with high order accuracy for solid-liquid phase change represented by sharp moving interface. Comput. Fluids 2022, 247, 105646. [Google Scholar] [CrossRef]
- Ng, K.C.; Alexiadis, A.; Ng, Y.L. An improved particle method for simulating fluid-structure interactions: The multi-resolution SPH-VCPM approach. Ocean Eng. 2022, 247, 110779. [Google Scholar] [CrossRef]
- Mitsume, N.; Yoshimura, S.; Murotani, K.; Yamada, T. Explicitly represented polygon wall boundary model for the explicit MPS method. Comput. Part. Mech. 2015, 2, 73–89. [Google Scholar] [CrossRef]
- Benson, D.J.; Hallquist, J.O. A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Methods Appl. Mech. Eng. 1990, 78, 141–163. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Y.; Wan, D. Multi-resolution MPS method for free surface flows. Int. J. Comput. Methods 2016, 13, 1641018. [Google Scholar] [CrossRef]
- Greenhow, M.; Lin, W.M. Nonlinear-free surface effects: Experiments and theory. In Technical Report; Massachusetts Institute of Technology, Department of Ocean Engineering: Cambridge, MA, USA, 1983. [Google Scholar]
- Sun, H.; Faltinsen, O.M. Water impact of horizontal circular cylinders and cylindrical shells. Appl. Ocean Res. 2006, 28, 299–311. [Google Scholar] [CrossRef]
- Meduri, S.; Cremonesi, M.; Perego, U.; Bettinotti, O.; Kurkchubasche, A.; Oancea, V. A partitioned fully explicit lagrangian finite element method for highly nonlinear fluid-structure interaction problems. Int. J. Numer. Methods Eng. 2018, 113, 43–64. [Google Scholar] [CrossRef]
- Meduri, S.; Cremonesi, M.; Perego, U. An explicit lagrangian approach for 3D simulation of fluid-structure-interaction problems. In Proceedings of the 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) and 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 11–15 June 2018; pp. 2089–2098. [Google Scholar]
Parameter | Case 1 | Case 2 | Case 3 |
---|---|---|---|
Particle spacing (mm) | 10.0 | 10.0/20.0 | 10.0/15.0/20.0 |
Number of particles | 100,000 | 33,500 | 22,180 |
Number of boundary cells | 81,648 | 21,978 | 21,978 |
Parameter | Value |
---|---|
Effective radius (mm) | 2.9 li |
Fluid density (kg/m3) | 1000 |
Kinematic viscosity (m2/s) | 1.0 × 10−6 |
Gravitational acceleration (m/s2) | 9.8 |
Model | Fine Particles | Multi-Resolution Particles | Coarse Particles |
---|---|---|---|
Total number of particles | 180,000 | 65,000 | 6700 |
Total number of cells | 153,888 | 74,200 | 31,122 |
Particle spacing (mm) | 10.0 | 10.0, 20.0, 30.0 | 30.0 |
Cell size (mm) | 10.0 | 20.0 | 30.0 |
Parameter | Value |
---|---|
Effective radius (mm) | 2.9 li |
Fluid density (kg/m3) | 1000.0 |
Kinematic viscosity (m2/s) | 1.0 × 10−6 |
Gravitational acceleration (m/s2) | 9.8 |
Circular cylinder density (kg/m3) | 1000.0 |
Physical time (s) | 0.5 |
Parameter | Value |
---|---|
Effective radius (mm) | 2.9 li |
Fluid density (kg/m3) | 1000.0 |
Structure density (kg/m3) | 2500.0 |
Young’s modulus (MPa) | 1.0 |
Poisson’s ratio | 0.0 |
Kinematic viscosity (m2/s) | 1.0 × 10−6 |
Gravitational acceleration (m/s2) | 9.8 |
Physical time (s) | 1.0 |
Number of particles | 52,488 |
Number of cells | 104,204 |
Number of finite elements | 2220 |
Particle spacing (mm) | 4.06, 8.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Zhou, S.; Chen, J.; Mitsume, N.; Chen, S. A Multi-Resolution MPS/FEM Coupling Method for Three-Dimensional Fluid–Structure Interaction Analysis. J. Mar. Sci. Eng. 2023, 11, 1483. https://doi.org/10.3390/jmse11081483
Zheng Z, Zhou S, Chen J, Mitsume N, Chen S. A Multi-Resolution MPS/FEM Coupling Method for Three-Dimensional Fluid–Structure Interaction Analysis. Journal of Marine Science and Engineering. 2023; 11(8):1483. https://doi.org/10.3390/jmse11081483
Chicago/Turabian StyleZheng, Zumei, Shasha Zhou, Jun Chen, Naoto Mitsume, and Shunhua Chen. 2023. "A Multi-Resolution MPS/FEM Coupling Method for Three-Dimensional Fluid–Structure Interaction Analysis" Journal of Marine Science and Engineering 11, no. 8: 1483. https://doi.org/10.3390/jmse11081483
APA StyleZheng, Z., Zhou, S., Chen, J., Mitsume, N., & Chen, S. (2023). A Multi-Resolution MPS/FEM Coupling Method for Three-Dimensional Fluid–Structure Interaction Analysis. Journal of Marine Science and Engineering, 11(8), 1483. https://doi.org/10.3390/jmse11081483