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Abstract: This work aims to propose an efficient MPS/FEM coupling method for the simulation of
fluid–structure interaction (FSI), where the MPS and FEM are respectively employed to account for
fluid flows and structural deformation. The main idea of our method is to develop a multi-scale
multi-resolution MPS method for efficient fluid simulations in the context of MPS/FEM coupling.
In the developed multi-scale MPS method, the fluid domain is discretized into particles of different
resolutions before calculation, where particles close to the interest domain will be discretized into
high resolution, while the rest are discretized into low resolution. A large particle interacting with
small particles is divided into several small particles virtually, and weight functions are redefined
to maintain the simulation stability. A bucket-sort-based algorithm is developed for the fast search
of multi-resolution neighboring particles. The capacity of a newly proposed ghost cell boundary
model is further enhanced, so as to accurately treat wall boundary problems with particles of
different resolutions. On this basis, the multi-resolution MPS method is coupled with the FEM for
FSI simulations. Finally, several numerical examples are conducted to demonstrate the accuracy and
efficiency of the development method.

Keywords: multi-resolution MPS; fluid–structure interaction; MPS/FEM coupling; wall boundary
model; bucket sort algorithm

1. Introduction

In recent decades, an increasing interest has been devoted to investigating FSI phe-
nomena that are very common in nature and industry [1–3]. Such phenomena are quite
complicated, normally involving fluid flows, structural deformation, and interactions
between them. Among the approaches used for FSI problems, the traditional analytical
methods suffer from some limitations, as the interaction mechanism is complex and no
proper governing equations can be used to account for all kinds of situations [4]. As a
frequently used approach, experimental investigations are normally expensive, and atten-
tion needs to be paid to repeatability and environment factors that can affect experimental
results, especially when it comes to large-scale problems [5,6]. In contrast, numerical simu-
lations provide an effective and efficient way to reproduce complex FSI phenomena as well
as to perform parametric studies for in-depth understanding of interaction mechanisms,
and thus, this approach has attracted much attention in the scientific community.

Representative numerical algorithms involve grid-based FEM [7,8], where grids are
used to discretize the domains of interest. This approach is relatively mature and has re-
ceived widespread application in the FSI field. With the aid of such an approach, structural
deformation can be well simulated, while it remains a challenging task to describe fluid
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flows undergoing large displacements. Another widely used approach in the FSI field is
the immersed boundary-lattice Boltzmann method (IB-LBM) [9–11], which is based on the
Boltzmann equation. It has some advantages, such as easy implementation, high paral-
lelism, and effective treatment of complicated geometries. As for the mesh-free particle
methods, e.g., the smooth particle hydrodynamics (SPH) [12–16] and the moving particle
semi-implicit/simulation (MPS) method [17–19], the strong capability in solving fluid
flows with free surfaces and large displacements has been well documented. However, this
approach cannot simulate structural deformation and stress distribution well. In light of
this, growing attempts have been made to develop grid–particle coupling methods (e.g.,
MPS/FEM [20–24] and SPH/FEM [25,26]) to take full use of their advantages, where the
grid-based and particle-based methods are, respectively, adopted to account for structural
deformation and fluid flows.

The MPS method was first proposed by Koshizuka et al. [17] in a semi-implicit form
for the purpose of simulating the fragmentation of incompressible fluids, where the fluid
domain was discretized into particles of the same radius and the movement of a given par-
ticle was influenced by neighboring particles via a kernel function. Shakibaeinia et al. [27]
proposed a fully explicit MPS method for open-boundary free-surface flows, where the
pressure was calculated explicitly. This work advocates the use of the explicit MPS method
due to its simplicity and efficiency. Though the MPS method is promising in simulating
fluid flows with free surfaces and large displacement, one of the key remaining issues con-
cerns the low computational efficiency [28,29], which limits its applications in large-scale
problems. The main reason is that the particle resolution must be sufficiently precise to yield
satisfactory numerical results. In light of this issue, researchers have, therefore, developed
and used various numerical techniques to boost the computational efficiency of the MPS
method. Among them, a popular and effective strategy is to advocate the use of parallel
computing, which can mainly be categorized into two groups, i.e., CPU-based [30,31] and
GPU-based [32–34] schemes. In either kind of parallel scheme, the existing numerical
method should be well parallelized for a better computational efficiency. In this case, the
development of an easily parallelized numerical method is crucial for solving large-scale
problems. In addition, it is worth noting that the speed-up of parallel computing is related
to the computer hardware and programming techniques.

Currently, a large body of literature has focused on the development of multi-resolution
particle methods, whose fundamental idea is to use fine particles to mimic fluid domains
of interest and coarse particles for the rest of the fluid domains. A general treatment is
that the fluid domain is locally refined to a high-resolution level by using a prescribed
refinement criterion, such as a refinement domain, the number of neighbor particles, or
some physical terms [35–38]. In this regard, particles that meet the refinement criterion
are split, while those that flow out of the high-resolution domain are merged to coarse
particles. The key points of such treatments are particle splitting/merging and information
exchange between particles of different resolutions, which remains a non-trivial task for
numerical simulations. On one hand, large particles that enter a high-resolution domain
should be split into small particles within a few iterative steps and vice versa, which is time
consuming and may cause numerical instability. On the other hand, it is quite difficult to
guarantee momentum conservation during the exchange of kinematic information between
particles of different resolutions. A possible remedy is to introduce a buffer zone between
high- and low-resolution domains to reduce computational errors to a certain extent [39,40].
In addition to the aforementioned methods, the so-called adaptive particle refinement
method [39,41–43] has recently been proposed, that is capable of moving high-resolution
domains accordingly, making it easy to trace complex and unsteady flow problems. Beyond
the above mentioned methods, the overlapping particle technique divides the flow domain
into sub-domains of different resolution [29,44–46]. Each sub-domain is overlapped with
another one, and both sub-domains can be calculated independently in the space and time
domains, while the result of one sub-domain is regarded as the boundary condition of the
other one. Inlet/outlet boundaries are usually set at the overlapped region to generate or
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erase particles and simulate the inflow and outflow of the fluid. By using this technique,
particles only interact with other particles in the same sub-domain, which means that
interactions between particles of different sizes are avoid. Except for the above-mentioned
multi-resolution approaches, there are also some other algorithms. Lastiwka et al. [47] de-
veloped an inlet/outlet boundary for the SPH simulation, where the non-uniform particle
distribution is preserved in the transverse direction. Oger et al. [48] proposed a spatially
varying resolution method by using different smoothing lengths in the SPH method and
simulated the wedge water entry problem. In this way, the number of fluid particles was
reduced greatly. Shibata et al. [49] proposed an ellipsoidal particle model to reduce the
number of particles and the computational cost. The size of each particle is the same in this
model, whereas the particle distribution varies in different directions. Since the particles in
the MPS method are merely calculation points, the ellipsoidal particles are virtual and have
no clear surface.

Although the local refined multi-resolution particle method and the overlapping
particle technique decrease the computational cost to some extent, they also have some
drawbacks. For example, the number of particles in these methods is not constant, which
is detrimental to the computation stability and not easy to extend to parallel computing.
Furthermore, the generating and merging of particles are time consuming, especially when
the interface of different-resolution regions is large. A simple yet efficient treatment that
needs to be mentioned is to set fluid domains of interest as non-fixed, which can be called
the multi-scale particle method, where particles of different resolutions are discretized prior
to calculations [28,50,51]. In such a numerical treatment, particle sizes remain unchanged
during simulations, and there are no splitting/merging processes. However, the mixing of
different resolution particles remains a challenge of this method.

In the context of particle–grid combined FSI simulations, most of the current work
adopts the uniform-resolution particle–grid coupling algorithms [23–25,52], where the
particle size is limited to the desired accuracy and wall boundary conditions, such as the
thin-wall problem. In the past years, some multi-resolution particle methods have been
adopted in FSI simulations to reduce the computational cost. For example, Fourey et al. [53]
developed a multi-resolution SPH-FEM method by using a variable space resolution, and
simulated a 2D FSI problem. Khayyer et al. [54–56] proposed the multi-resolution MPS-
MPS and incompressible smoothed particle hydrodynamics-SPH (i.e., ISPH-SPH) methods
for FSI simulation, where the fluid and the structure are described by mesh free particles of
different resolutions. Similarly, Zhang et al. [57] proposed a multi-resolution SPH method
and simulated 2D fluid–structure interaction problems. Recently, Sun et al. [58] applied
the multi-resolution MPS-DEM method for a 2D FSI simulation, where the fluid was simu-
lated with the multi-resolution MPS method and the structure was described by the DEM.
Chen et al. [59] proposed the multi-resolution SPH-FEM method, where the beam elements
in FE were coupled with SPH particles and 2D FSI problems were simulated. Although the
multi-resolution particle–particle methods (such as MPS-MPS, SPH-SPH and ISPH-SPH)
show great advantages in reducing computational cost, the particle methods are limited
to structure descriptions. Long et al. [60] proposed a novel multi-resolution smoothed
particle element method (SPEM) for modeling fluid–structure interaction problems. Both
the fluid and structure parts are modeled by finite element meshes firstly. When an element
in the fluid domain is distorted, the element and other elements in the same group will be
converted into SPH particles. Elements in the surrounding groups will be split into ghost
particles to deal with interactions between refined fluid particles and coarse fluid elements.
This method is very efficient due to the application of finite elements in most of the simula-
tion domain. In [61], a multi-resolution MPS method is proposed for solid–liquid phase
change accompanied by thermal flow. Particles near the boundary and phase interfaces are
refined into small particles, where the LSMPS method is used for information interpolation
between particles of different sizes. Furthermore, the multi-resolution smoothed particle
hydrodynamics–volume compensated particle method (SPH-VCPM) is proposed in [62]
for FSI simulation, where the particle resolution of the structure is finer than the fluid, and
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solid particles serve as dummy particles for the fluid calculation. However, the proposed
multi-resolution particle–grid methods are still limited to 2D problems.

Furthermore, the interactions between fluid flows and structural deformation can
normally be achieved via boundary models [23,25]. More specifically, a structural shape
can be regarded as movable wall boundaries of fluid flows, and the forces from fluids to
structures are treated as external force terms acting on the structures. In this regard, one
may refer to the wall particle model [17], the polygon wall boundary model [52], the mirror
particle boundary [63], and the ghost cell boundary model [18], to name but a few. It is
worth noting that the newly proposed ghost cell boundary model is able to provide an
easy and natural treatment for wall boundaries of complicated shapes, whose capacity has
been extended to three-dimensional FSI problems as well [18,23]. However, most of the
aforementioned boundary models were developed for particles of a single resolution, and
thus, more works concerning this aspect are required for the development of a coupling
algorithm with multi-resolution particles.

This work mainly focuses on the development of an efficient and effective three-
dimensional multi-resolution MPS/FEM coupling method to solve FSI problems. This is
achieved by developing a multi-scale multi-resolution MPS method to boost the computa-
tional efficiency for fluid simulations. The main appeal of our multi-scale multi-resolution
MPS method is its robustness and simplicity, where a large particle interacting with small
ones is divided into several small particles virtually, and weight functions are redefined
to maintain the proper particle number density values. In addition to that, a modeling
approach is investigated for the study of a smooth interface transition. Furthermore, the
developed MPS method is equipped with a newly proposed ghost cell boundary model to
achieve an advanced MPS/FEM coupling algorithm. Our coupling method is promising for
some FSI applications, e.g., water entry problems and wave propagation with floating objects,
where fluids of special interest are far away from the interface of different resolutions.

This manuscript is organized as follows. The basic formulations of the traditional
MPS method are introduced in Section 2. In Section 3, the developed multi-resolution
MPS and the improved bucket sort algorithm are described in detail. Then, the proposed
multi-resolution MPS/FEM coupling method is addressed in the following section. Several
numerical examples are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Explicit MPS Method

The governing equations for a quasi-incompressible Newtonian fluid can be expressed
in terms of the Navier–Stokes and continuity equations [52,64]:

Dv
Dt

= −1
ρ
∇P + υ∇2v + f, (1)

1
ρ

∂ρ

∂t
+∇ · v = 0, (2)

where v is the velocity vector, ρ is the density of the fluid, P is the pressure, υ is the
e kinematic viscosity, and f is the external force.

The main idea of the explicit MPS method is to solve incompressible fluid flow prob-
lems with the aid of Lagrangian-based particles. In this method, the movement of a fluid
particle i is affected by other fluid particles in its neighboring domain, which is decided by
an effective radius re. The expression for re is given as:

re = kl0, (3)

where l0 denotes the initial particle spacing, and k is a constant. Note that the constant
should be set properly, because a too large value will result in huge computational cost,
while a too small value may lead to numerical instability.

The influence of neighboring particles on particle i is weighted by a kernel function:
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w(rij) =

{
re
rij
− 1 (0 ≤ rij < re)

0 (re ≤ rij)
, (4)

where rij =
∣∣xij
∣∣ = ∣∣xj − xi

∣∣ is the distance between particle i and a certain neighboring
particle j; xi = (xi, yi) and xj = (xj, yj) are the position vectors of particles i and j, respectively.

A normalization factor, named the particle number density, is defined as:

ni = ∑
j 6=i

w(rij), (5)

Note that the particle number density is proportional to the fluid density [17,27].
Then, the pressure gradient term and the viscosity term take the following terms:

〈∇P〉i =
d
n0

∑
j 6=i

[
xij∣∣xij
∣∣ Pi + Pj∣∣xij

∣∣ w(rij)], (6)

〈
∇2v

〉
i
=

2d
λ0n0

∑
j 6=i

[(vj − vi)w(rij)], (7)

where d is the number of dimensions; n0 is the constant particle number density, and λ0
is a constant parameter; Pi and Pj are the pressures on particles i and j, respectively; vi
and vj are, respectively, the velocity vectors on particles i and j. Here, n0 and λ0 should be
calculated for the initial geometry, and λ is determined as:

λ =
∑j 6=i

∣∣xij
∣∣2w(rij)

∑j 6=i w(rij)
, (8)

For particle i, it is supposed to be on a free surface when the following equation
is satisfied.

ni < βn0, (9)

where β is a threshold coefficient set to 0.97 [17]. It is worth noting that if the value of b is
very large, the internal fluid particles are easily misjudged as free surface particles, thus
reducing the simulation accuracy. On the contrary, if the value of b is very small, only the
particles on the outermost layer will be judged as free surface particles, which may lead to
instability under some circumstances. Therefore, the value of b must be set properly. The
Dirichlet condition is applied to the pressures of particles on the free surface, which means
P = 0 for those particles.

In this work, the fluid is assumed to be weakly compressible, and the pressure at the
(n + 1)-th time step can be expressed as:

Pn+1
i = c2ρ(

n∗i
n0
− 1), (10)

where c is a parameter used to maintain numerical stability, and n∗i is the particle number
density calculated by using temporary particle positions.

In addition, the MPS method uses the fractional step algorithm for time discretization.
For more details about the above formulations please refer to [18,23].

3. Multi-Resolution MPS Method
3.1. Multi-Resolution Formulations

As mentioned above, one of our main contributions in the present work is the de-
velopment of a multi-scale multi-resolution MPS method. The fundamental idea of the
developed method is to discretize the fluid domain via pre-defined fine and coarse particles,
as shown in Figure 1. In doing so, fluid flows under special attention can be well described,
while the computational cost can be reduced to a satisfactory level. In this regard, some
of the formulations addressed in Section 2, e.g., the kernel function (Equation (4)), are
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no longer applicable. This section will introduce the developed multi-resolution method
in detail.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

3. Multi-Resolution MPS Method 

3.1. Multi-Resolution Formulations 

As mentioned above, one of our main contributions in the present work is the devel-

opment of a multi-scale multi-resolution MPS method. The fundamental idea of the de-

veloped method is to discretize the fluid domain via pre-defined fine and coarse particles, 

as shown in Figure 1. In doing so, fluid flows under special attention can be well described, 

while the computational cost can be reduced to a satisfactory level. In this regard, some 

of the formulations addressed in Section 2, e.g., the kernel function (Equation (4)), are no 

longer applicable. This section will introduce the developed multi-resolution method in 

detail. 

Firstly, the volume of particle i, i.e., Vi, is defined as: 

d

ii lV )(= , (11) 

where li is the particle spacing of i, and d is the space dimension. 

Then, the effective radius of particle i, re,i, can be redefined as: 

 

Figure 1. Schematic diagram of MPS methods: (a) the traditional MPS method, (b) the multi-resolu-

tion MPS method. 

iie klr =,
, (12) 

where the constant k is set to 2.9 in the present work. 

As shown in Figure 2, four different scenarios exist for the cutoff region of particle i 

in the context of multi-resolution MPS modeling. Accordingly, the kernel function be-

tween particle i and its neighboring particle j is defined as follows. 

Figure 1. Schematic diagram of MPS methods: (a) the traditional MPS method, (b) the multi-
resolution MPS method.

Firstly, the volume of particle i, i.e., Vi, is defined as:

Vi = (li)
d, (11)

where li is the particle spacing of i, and d is the space dimension.
Then, the effective radius of particle i, re,i, can be redefined as:

re,i = kli, (12)

where the constant k is set to 2.9 in the present work.
As shown in Figure 2, four different scenarios exist for the cutoff region of particle i in

the context of multi-resolution MPS modeling. Accordingly, the kernel function between
particle i and its neighboring particle j is defined as follows.
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Figure 2. Particle interactions for multi-resolution MPS modeling: (a) interactions between coarse
particles, (b) interactions between a coarse particle and particles of different radii, (c) interactions
between fine particles, (d) interactions between a fine particle and particles of different radii, where a
large particle j will virtually be split into small particles jvir.
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(1) When li ≥ lj, i.e., for scenarios (a), (b), and (c), the kernel function can be expressed as:

w(rij)
(1) =

 (
re,i
rij
− 1)

Vj
Vi

(0 ≤ rij ≤ re,i)

0 (re,i ≤ rij)
, (13)

where rij =
∣∣xj − xi

∣∣.
(2) When li < lj, i.e., for scenario (d), the coarse particle j will be divided into small virtual

particles, where there are four virtual particles in two dimensions (see Figure 2d),
and eight virtual particles in three dimensions, hypothetically. The coordinates of the
eight small virtual particles in the 3D problem are xjvir = (xjvir , yjvir , zjvir ) = (xj ± 1

8 lj,
yj ± 1

8 lj, zj ± 1
8 lj), where vir = 1, 2, . . .8.

As a result, the expression of the kernel function is given as:

w(rij)
(2) =

8

∑
vir=1

w(rijvir ), (14)

with

w(rijvir ) =

 (
re,i

rijvir
− 1)

Vjvir
Vi

(0 ≤ rijvir ≤ re,i)

0 (re,i ≤ rijvir )
, (15)

where rijvir =
∣∣xjvir − xi

∣∣ and Vjvir = 1/8Vj.
In consideration of the aforementioned kernel functions, the particle number density

for particle i can be redefined as:

ni = ∑
j 6=i

(w(rij)
(1) + w(rij)

(2)). (16)

Accordingly, the pressure gradient term and the viscosity term take the following
expressions.

(1) When li ≥ lj, i.e., for scenarios (a), (b), and (c), the expressions are given as:

〈∇P〉(1)ij =
d
n0

[
xij∣∣xij
∣∣ Pi + Pj∣∣xij

∣∣ w(rij)
(1)], (17)

〈
∇2v

〉(1)
ij

=
2d

λ0n0
[(vj − vi)w(rij)

(1)]. (18)

(2) When li < lj, i.e., for scenario (d), the two terms are rewritten as:

〈∇P〉(2)ij =
d
n0

8

∑
vir=1

[
xijvir∣∣xijvir

∣∣ Pi + Pjvir∣∣xijvir

∣∣ w(rijvir )], (19)

〈
∇2v

〉(2)
ij

=
2d

λ0n0

8

∑
vir=1

[(vjvir − vi)w(rijvir )], (20)

where xijvir = xjvir − xi, Pjvir = Pj + ρg(yj − yjvir ), and vjvir = vj. Here, g is the acceleration
due to gravity. n0 and λ0 are the constant particle number density and a constant parameter
calculated for the initial geometry, respectively. λ is calculated as:

λ =
∑j 6=i

∣∣xij
∣∣2(w(rij)

(1) + w(rij)
(2))

∑j 6=i (w(rij)
(1) + w(rij)

(2))
, (21)

In summary, the final expressions of the pressure gradient term and the viscosity term
are given as:

〈∇P〉i = ∑
j 6=i

(〈∇P〉(1)ij + 〈∇P〉(2)ij ), (22)
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〈
∇2v

〉
i
= ∑

j 6=i
(
〈
∇2v

〉(1)
ij

+
〈
∇2v

〉(2)
ij

), (23)

The other formulations, including those for fractional step calculations and the freesur-
face detections, are the same as those of the traditional MPS method.

3.2. Improved Bucket Sort Algorithm

Normally, the so-called bucket sort algorithm [65] is employed to account for efficient
searching of neighboring particles for a given MPS particle. In view of the multi-resolution
characteristics of fluid simulations, the bucket sort algorithm is further improved, which
mainly involves three steps.

(1) Domain decomposition. In this step, the domain to be solved is decomposed into
a series of cells; see the rectangular cells (C1 to C9) with purple lines in Figure 3. A
common treatment in the traditional MPS method is to set the cell size to be equal to
the effective radius re for convenience. In the present work, the cell size is set to be
the maximum effective radius, i.e., remax = klmax, where k = 2.9 and lmax is the largest
particle spacing in the simulation model.
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Figure 3. Schematic diagram of the improved bucket sort algorithm.

(2) Particle positioning. The purpose of this step is to map all the particles into the
decomposed cells according to their positions, and the mapped particles within each
cell are recorded.

(3) Potential pairs. The aim of this step is to find all the potential particles that fall
within the influence domain of a given particle. This is achieved by looping over the
decomposed cells, and performing distance judgments for each particle in a given
cell with other particles in the same cell and neighboring cells. Take particle i in cell
C5 as an example. If lj > li, the influence radius of particle i is klj (see the green circle
in Figure 3). In this case, particles i and j will be treated as a potential pair when
Equation (24) is satisfied. However, the influence radius becomes kli (see the red circle
in Figure 3) when lj ≤ li, and particles i and j will be treated as a potential pair if
Equation (25) is satisfied. In this case, all the neighbor particles of i are found.

rij < klj (li < lj), (24)

rij < kli (lj < li), (25)
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4. Multi-Resolution MPS/FEM Coupling Method

The present work is interested in the development of an MPS/FEM coupling method
for FSI simulations on the basis of the multi-resolution MPS scheme developed in Section 3.
A popular and common strategy to couple the MPS and the FEM that are, respectively,
employed to account for fluid flows and structural deformation is to seek recourse to
boundary models. In this regard, this work advocates the use of a ghost cell boundary
model [18] that was newly proposed to provide an easy and natural treatment for wall
boundaries of complicated shapes. However, this boundary model is currently only appli-
cable to particles of a single resolution. In light of this, the capability of the boundary model
is further enhanced to aid the development of an efficient multi-resolution MPS/FEM
coupling method.

4.1. Improved Boundary Model

For a given particle i near the wall boundary, its movement is affected by both the fluid
flows and the surrounding wall boundary. The main idea of the ghost cell boundary model
is to consider particle–particle interactions via the traditional version of the MPS model,
and develop an integral version for particle–wall interactions. As a result, the particle
number density, the pressure gradient term, and the viscosity term are calculated as [18,23]:

ni = n f luid
i + nwall

i , (26)

〈∇P〉i = 〈∇P〉 f luid
i + 〈∇P〉wall

i , (27)

〈
∇2v

〉
i
=
〈
∇2v

〉 f luid

i
+
〈
∇2v

〉wall

i
, (28)

where in the multi-resolution MPS modeling, the contributions from the fluids, i.e., ni
fluid,

〈P〉 f luid
i , and

〈
∇2v

〉 f luid
i , can be yielded via Equations (16), (22) and (23), respectively. While

ni
wall, 〈P〉wall

i , and
〈
∇2v

〉wall
i are calculated by the ghost cell boundary model. Taking the

particle number density as an example, the affect from the wall boundary is calculated by
an integral version of the MPS model, and is simplified to the following form:

nwall
i =

1

(l0)
d

Nc

∑
c=1

w(ric)Sc, (29)

where xc is the position vector of the integration point in the physical coordinate system
of ghost cell c and ric = |xc − xi|. Sc is the area of the ghost cell in a 2D problem (note: Sc
should be the volume of the ghost cell in 3D). By using this model, the cell size must be
approximate to or smaller than the initial particle spacing to guarantee the accuracy, which
is not convenient for the multi-resolution MPS method. In this case, the GCB model is
improved. As shown in Figure 4, interactions between fluid particle i and boundary cell c
take the following situations.

(1) When li ≥ lc, i.e., for scenarios (a), (b), and (c) in Figure 4, the expression for the kernel
function can be expressed as:

w(ric)
(1) =

{
(

re,i
ric
− 1)Vc

Vi
(0 ≤ ric < re,i)

0 (re,i ≤ ric)
, (30)

where ric = |xc − xi|. Here, xc is the position vector of the integration point in the physical
coordinate system of cell c, and Vc = (lc)d is the volume of cell c. One can refer to the
expressions of xc and Vc in [18].

(2) When li < lc, a given large cell will be divided into several small cells, with four small
cells in two dimensions (see scenario (d) in Figure 4) and eight small cells in three
dimensions, hypothetically. The coordinates of these small ghost cells in a 3D problem
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are xcvir = (xcvir , ycvir , zcvir ) = (xc ± 1
8 lc, yc ± 1

8 lc, zc ± 1
8 lc), where vir = 1, 2, . . .8. In this

case, the kernel function is written as:

w(ric)
(2) =

8

∑
vir=1

w(ricvir ) (31)

w(ricvir ) =

{
(

re,i
ricvir
− 1)

Vcvir
Vi

(0 ≤ ricvir < re,i)

0 (re,i ≤ ricvir )
, (32)

where ricvir = |xcvir − xi| and Vcvir = 1/8Vc.
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Figure 4. Schematic diagram of the improved boundary model for multi-resolution MPS modeling:
(a) interactions between a coarse particle with a coarse boundary cell, (b) interactions between a
coarse particle and boundary cells of different sizes, (c) interactions between a fine particle with a
small boundary cell, and (d) interactions between a fine particle and cells of different sizes, where a
large cell c will virtually be split into small cells cvir.

The particle number density contributed to particle i from the wall boundary is
written as:

nwall
i =

Nc

∑
c=1

(w(ric)
(1) + w(ric)

(2)), (33)

Accordingly, the pressure gradient term and the viscosity term take the following equations.

(1) When li ≥ lc:

〈∇P〉(1)ic =
d
n0

[
xic
|xic|

Pi + Pc

|xic|
w(ric)

(1)], (34)

〈
∇2v

〉(1)
ic

=
2d

λ0n0
[(vc − vi)w(ric)

(1)], (35)

where Pc = Pi and vc = vi are the pressure and the velocity vectors on the integration point
of cell c, respectively.

(2) When li < lc:

〈∇P〉(2)ic =
d
n0

8

∑
vir=1

[
xicvir∣∣xicvir

∣∣ Pi + Pcvir∣∣xicvir

∣∣ w(ricvir )], (36)

〈
∇2v

〉(2)
ic

=
2d

λ0n0

8

∑
vir=1

[(vcvir − vi)w(ricvir )], (37)

where xicvir = xcvir − xi, Pcvir = Pc + ρg(yc − ycvir ), and vcvir = vc. λ is expressed as:
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λ =

Nc
∑

c=1
|xic|2(w(ric)

(1) + w(ric)
(2))

Nc
∑

c=1
(w(ric)

(1) + w(ric)
(2))

, (38)

According to the equations above, one can obtain the final expressions of the pressure
gradient term and the viscosity term from the wall boundary to the fluid domain as follows.

〈∇P〉wall
i =

Nc

∑
c=1

(〈∇P〉(1)ic + 〈∇P〉(2)ic ), (39)

〈
∇2v

〉wall

i
=

Nc

∑
c=1

(
〈
∇2v

〉(1)
ic

+
〈
∇2v

〉(2)
ic

), (40)

It is worth noting that the searching process of neighboring cells for a given particle is
similar to that described in Section 3.2.

4.2. Coupling of Multi-Resolution MPS and FEM

In the fluid–structure coupling scheme, the fluid analysis and structure calculations are
implemented separately. As shown in Figure 5, neighbor sorting is performed firstly to find
potential contact pairs among the fluid particles and finite elements, where multi-resolution
particles and block finite elements are adopted in this work. The internal force caused by
structure deformation is calculated subsequently. External forces acting on the structure
include gravity, contact force, and pressure coming from the fluid part. After the above
calculation, the node information is updated. As for fluid particles, the viscosity term and
the external force will be implemented to obtain the intermediate particle information. Then,
the pressure gradient term is solved to update the particle information finally. During the
calculation, the deformable geometrical shapes of structures can be viewed as the moving
wall boundaries of fluid flows. In our coupling method, on one hand, the contribution
from structures to fluids is easily calculated with the aid of the improved boundary model
addressed in Section 3.2; on the other hand, the effect from fluids to structures takes the
following form:

fc = −mi

Ni

∑
i=1

(−1
ρ
〈∇P〉wall

ic + υ
〈
∇2v

〉wall

ic
), (41)

where mi = ρ(li)
d is the mass of particle i interacting with cell c. 〈P〉wall

ic and 〈∇2v〉wall
ic are

given as:

〈∇P〉wall
i =

 〈∇P〉(1)ic (li ≥ lc)

〈∇P〉(2)ic (li < lc)
, (42)

〈
∇2v

〉wall

i
=


〈
∇2v

〉(1)
ic (li ≥ lc)〈

∇2v
〉(2)

ic (li < lc)
. (43)
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5. Numerical Examples

In this section, the effectiveness and robustness of the developed multi-resolution MPS
method and the improved boundary model are validated via two numerical examples, i.e.,
the hydrostatic problem, and the water entry problem. On this basis, the capacity and effec-
tiveness of our developed multi-resolution MPS/FEM coupling method are demonstrated
via the dam break problem with an elastic obstacle.

5.1. Hydrostatic Problem

The first numerical example used in the present work for verification is a well-known
hydrostatic benchmark problem [66]. As shown in Figure 6, the geometric dimensions
of the water tank are 1000 mm × 1000 mm, whereas the thickness of the tank is 100 mm.
Three cases. i.e., cases 1, 2, and 3, are simulated to validate the effectiveness of the multi-
resolution MPS method. Uniform fine particles are adopted in case 1 for comparison. In
case 2, the upper center part of the fluid area is discretized into high-resolution particles,
whereas low-resolution particles are used elsewhere. In case 3, three levels of particles
are applied, where the finest particles are used in the orange region, the middle-sized
particles are applied in the green region, and the largest particles are used elsewhere.
Figure 7 displays simulation models of the three cases, where the smallest particle spacing
of 10.0 mm is used in case 1 and the particle number is 100,000. The particle spacings for
the high- and low-resolution particles in case 2 are, respectively, 10.0 mm and 20.0 mm, and
the corresponding particle numbers are 24,000 and 9500. In case 3, the particle spacings
are 10.0 mm, 15.0 mm, and 20.0 mm for high-, middle-, and low-resolution particles,
respectively, and the corresponding numbers of particles are 7500, 5180, and 9500. As
mentioned before, the boundary cell size is the same as the maximum particle size in
every simulation model, and the total numbers of boundary cells are 81,648, 21,978, and
21,978, respectively. Detailed information of the three cases is given in Table 1, and te
corresponding simulation parameters are listed in Table 2.

Table 1. Detailed information of the three cases in the hydrostatic problem.

Parameter Case 1 Case 2 Case 3

Particle spacing (mm) 10.0 10.0/20.0 10.0/15.0/20.0
Number of particles 100,000 33,500 22,180

Number of boundary cells 81,648 21,978 21,978

Table 2. Simulation parameters of the hydrostatic problem.

Parameter Value

Effective radius (mm) 2.9 li
Fluid density (kg/m3) 1000

Kinematic viscosity (m2/s) 1.0 × 10−6

Gravitational acceleration (m/s2) 9.8
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tions. When it comes to case 3, the shapes of the high- and middle-resolution regions are 

Figure 7. Simulation models of the hydrostatic problem: (a) uniform particle distribution model with
the particle spacing of 10.0 mm; (b) two-layer particle distribution mode with the particle spacings of
10.0 mm and 20.0 mm; (c) three-layer particle distribution mode with the particle spacings of 10.0
mm, 15.0 mm, and 20.0 mm.

Figure 8 shows the pressure nephogram of the three cases at t = 10 s. It can be seen
from this figure that a regular and uniform pressure distribution is yielded. A relatively
smooth pressure distribution is also obtained at the interface of different particle sizes in
cases 2 and 3. It is obvious that the shape of the high-resolution region in Figure 8b is
different from the original shape shown in Figure 7b, which was also observed in [66].
However, the difference in the present work is more obvious than that in [66], because
the three-dimensional problem is simulated here and particles are packing in the three
directions. When it comes to case 3, the shapes of the high- and middle-resolution regions
are similar to the one shown in Figure 7c, which indicates that the smooth transition of
particle size may improve the particle distribution at the interface.

Figure 9 gives the kinetic energy predicted by the three cases, where MgH means
the gravitational potential energy of the water in the initial configuration. It can be seen
from this figure that the kinetic energy of the three cases increases rapidly at the initial
stage, then falls down and reaches a very small value soon after. It can be concluded that
the disturbance caused by different particle sizes is not large and can be reduced quickly.
Furthermore, in this example, the computational times of cases 1, 2, and 3 are 102 h and
6 min, 65 h and 35 min, and 40 h and 58 min, respectively, where the computational costs of
cases 2 and 3 are reduced by 35.8% and 59.9% compared to case 1. These numerical results
demonstrate the effectiveness and accuracy of the proposed multi-resolution MPS method
and the improved boundary model.
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5.2. Water Entry Problem

This section considers a common water entry problem [51,67,68] for further nu-
merical verification. As displayed in Figure 10, the dimensions of the water tank are
2.0 m × 0.3 m × 0.3 m, and the radius of the rigid circular cylinder is 55 mm. Initially, the
center of the rigid circular cylinder is placed at a position that is 1.0 m to the left boundary
of the tank and 0.5 m above the water level. The cylinder falls down freely under gravity
from the beginning, and then strikes the water at about 0.301 s with an entry velocity of
2.955 m/s. Here, the rigid circular cylinder is only allowed to move in the vertical direction.
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Figure 10. Schematic diagram of the water entry problem.

Figure 11 shows three simulation models of the water entry problem. In Figure 11a,
the fluid area is described via particles with a uniform particle spacing of 10.0 mm and
the number of particles is 180,000, while the cell size of the water tank is 10.0 mm and the
cell number is 149,688. In Figure 11b, the water tank is discretized into cells with sizes
of 20.0 mm and the cell number is 70,000. In order to well describe the impacted fluid’s
behavior, the impacted fluid domain is described via the finest particles, with the particle
spacing of 10.0 mm and the particle number of 54,000; relatively coarser particles are used
for the intermediate domain, with the particle spacing of 20.0 mm, and the particle number
is 4500; for the domain far away from the impacted region, the coarsest particles with the
particle spacing of 30.0 mm are used, and the particle number is 2000. For the third model,
as shown in Figure 11c, the fluid domain is described via particles with a uniform particle
spacing of 30.0 mm and the number of particles is 6700, while the cell size for the water tank
is 30.0 mm and the cell number is 26,922. It is worth noting that in all the three simulation
models, in order to ensure numerical accuracy, the rigid circular cylinder is discretized
into cells with a size close to 10.0 mm, and the cell number is 4200. The corresponding
simulation parameters are given in Tables 3 and 4.

Table 3. Simulation models of the water entry problem.

Model Fine Particles Multi-Resolution Particles Coarse Particles

Total number of particles 180,000 65,000 6700
Total number of cells 153,888 74,200 31,122
Particle spacing (mm) 10.0 10.0, 20.0, 30.0 30.0

Cell size (mm) 10.0 20.0 30.0
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Table 4. Simulation parameters for the water entry problem [51].

Parameter Value

Effective radius (mm) 2.9 li
Fluid density (kg/m3) 1000.0

Kinematic viscosity (m2/s) 1.0 × 10−6

Gravitational acceleration (m/s2) 9.8
Circular cylinder density (kg/m3) 1000.0

Physical time (s) 0.5
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Figure 11. Simulation models of the water entry problem: (a) fine particle model, (b) multi-resolution
particle model, (c) coarse particle model.

Snapshots of the free-surface profile and pressure distribution are shown in Figure 12.
It can be seen from this figure that the circular cylinder impacts the water level and causes
a high pressure distribution under the circular cylinder at about 0.31 s. As the circular
cylinder continues to move down, fluid particles splash to the sides of the cylinder, and a
jet flow can be observed. It can also be observed that the result calculated via the multi-
resolution model is in good agreement with that obtained via the fine particle model, and
is much more natural than the one computed via the coarse particle model. Otherwise, a
smooth transition between particles of different resolutions can be observed in Figure 12b.
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Figure 12. Snapshots of the free surface profile and z displacement of the water entry problem
at different time instants: (a) Fine particle model, (b) Multi-resolution particle model, (c) Coarse
particle model.

The penetration depth versus time curves of the circular cylinder are shown in Figure 13,
where the time axis is set from the initial impact moment. In this figure, the purple line
indicates the result calculated via our developed model, the red and green lines indicate
the results calculated, respectively, via the coarse and fine particle models, the yellow and
blue lines indicate the results published, respectively, in [51,68], and the black rectangle
indicates the experimental data [67]. Greenhow and Lin put a question mark on one
of the experimental values (see Figure 13) because it obviously deviates from the other
data. Ignoring this problem datum, our numerical result is found to be in good agreement
with the experimental data in [67] and other simulation results in [51,68]. In addition, the
result of the developed multi-resolution particle model agrees well with that of the fine
particle model, where a large deviation is observed from the result of the coarse particle
model. In addition to that, the computational cost of the fine particle method is about five
times higher than that of the multi-resolution MPS method. With this numerical example,
the effectiveness and accuracy of the developed multi-resolution MPS method and the
improved boundary model are verified.
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5.3. Dam Break with an Elastic Obstacle

The purpose of this section is to demonstrate the effectiveness and accuracy of the
proposed multi-resolution MPS/FEM coupling method via another benchmark test, i.e.,
the dam break problem with an elastic obstacle [20,23,69]. As shown in Figure 14, the
dimensions of the tank, the water column, and the elastic obstacle are 4 L × L × 4 L,
L × L × 2 L, and s × L × h, respectively. Here, L is 146 mm, s is 12 mm, and h is 80 mm.
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Figure 14. Schematic diagram of the dam break problem with an elastic obstacle.

Figure 15 shows the simulation model of the dam break test with an elastic obstacle,
where the particle spacings of the high- and low-resolution domains are 4.06 mm and
8.11 mm, respectively. The numbers of high- and low-resolution particles are, respectively,
46,656 and 5832. In order to well describe the structural deformation and FSI phenomena,
the mesh/cell sizes for the elastic obstacle and its surrounding wall boundaries are set to
be close to the particle spacing of the high-resolution domain. After discretization, the
numbers of boundary cells and finite elements are 104,204 and 2220, respectively. As for
the other simulation parameters, they are listed in Table 5.
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Table 5. Simulation parameters of the dam break test with an elastic obstacle [20].

Parameter Value

Effective radius (mm) 2.9 li
Fluid density (kg/m3) 1000.0

Structure density (kg/m3) 2500.0
Young’s modulus (MPa) 1.0

Poisson’s ratio 0.0
Kinematic viscosity (m2/s) 1.0 × 10−6

Gravitational acceleration (m/s2) 9.8
Physical time (s) 1.0

Number of particles 52,488
Number of cells 104,204

Number of finite elements 2220
Particle spacing (mm) 4.06, 8.11

In Figure 16, one can observe the flow patterns and pressure nephograms of the
benchmark test at time instances t = 0.12, 0.36, 0.60, 0.84 s. It can be seen that the water
column firstly collapses under the action of gravity, and hits the elastic obstacle at about
0.15 s, followed by the bending of the obstacle; subsequently, the fluid falls down after
hitting the wall on the right-hand side, and strikes the obstacle again; the obstacle sways
due to the FSI effect. In addition, the area close to the elastic obstacle is locally enlarged at
the top left corner of each sub-figure, where one can clearly see the interaction between
particles and finite elements. It is worth noting that particles around the elastic structure
are almost only high-resolution particles, which guarantees the computational accuracy for
the modeling of the FSI phenomenon.
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As shown in Figure 17, we plot the y displacement history of the free end of the obsta-
cle, and compare it with an existing numerical result calculated by the single-resolution
MPS/FEM method [23]. Although there are slight differences, the two curves are in good
consistent with each other. In Figure 18, the simulation result is further compared with
numerical results from the literature [20,69,70]. One can see from this figure that our dis-
placement history curve agrees well with existing numerical data. With those flow profiles
and comparisons, the effectiveness of our proposed multi-resolution MPS/FEM coupling
method are verified. Still, one should be careful about the modeling of the fluid area; if the
high-resolution area is not large enough, the simulation accuracy can not be guaranteed.
Conversely, if the high-resolution area is too large, the improvement of the computational
efficiency may not be obvious.
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ment history of the free end of the obstacle. In this figure, “Multi-MPS/FEM” means the numerical
result calculated via the multi-resolution MPS/FEM coupling method; “Mitsume”, “PFEM-FEM2D”,
and “PFEM-FEM3D” are the numerical results from the literature [20,69,70].
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6. Conclusions

This work has developed a multi-resolution MPS/FEM method for efficient FSI simu-
lation. To achieve this end, a multi-resolution MPS method that, respectively, discretizes
the fluid domains of interest and the rest of the domains into fine and coarse particles is
developed. The main appeal of this method is that the computational efficiency for fluid
simulations is dramatically boosted, while being robust and easy to implement. The MPS
kernel function is modified to guarantee stable calculations between particles of different
resolutions, and a searching method based on the bucket sort algorithm is developed for
the fast determination of neighboring particles. The multi-resolution MPS method is easily
coupled with the FEM with the aid of an improved ghost cell boundary model. As for
verifications, two benchmark numerical tests, i.e., the hydrostatic problem and the water
entry problem, are first performed to demonstrate the effectiveness and accuracy of the
developed multi-resolution MPS method and the improved boundary model. Finally,
the widely used dam break problem with an elastic obstacle is carried out for numerical
verification of our developed multi-resolution MPS/FEM coupling method. The numerical
results show that our proposed method is very effective for FSI applications.

Large-scale FSI problems, such as tsunamis and the flash floods, are easily encountered
in real life. Even though our developed MPS/FEM coupling method can be an efficient
tool to reproduce FSI phenomena, it still requires considerable computational cost for
our method to solve large-scale problems. In order to further improve the computational
efficiency, the multi-GPU based parallel computing technique is going to be applied in
the near future. The developed coupling method will be accelerated with CUDA Fortran,
and the application of the parallelized coupling algorithm will be extended to multi-body
floating wind turbine problems.
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