Deep Learning-Based Approaches for Oil Spill Detection: A Bibliometric Review of Research Trends and Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Base
2.2. Data Analysis
3. Results
3.1. Publishing Trends
- −
- Cluster 1: This cluster primarily focuses on neural networks, network approaches, experimental results, dark spot detection, and dark formation detection. Researchers in this cluster use various neural network models to detect and classify oil spills.
- −
- Cluster 2: The second cluster revolves around oil spill detection, network methods, recall metrics, overall accuracy, and environmental factors. Researchers in this cluster develop and evaluate different network methods for detecting oil spills, considering environmental factors that affect oil spill detection accuracy.
- −
- Cluster 3: This cluster is focused on synthetic aperture radar (SAR), accuracy, marine oil spill detection, convolutional neural networks (CNN), and marine oil pollution. Researchers in this cluster work on developing and improving SAR-based methods for detecting marine oil spills, using CNN models and other techniques to enhance accuracy.
- −
- Cluster 4: This one deals with artificial neural networks, oil spill accidents, ocean waves, sunglint effects, and optical images. Researchers in this cluster explore the use of artificial neural networks for detecting oil spills, considering various factors that affect detection accuracy, such as ocean waves and sunglint effects.
- −
- Cluster 5: The fifth cluster focuses on image data, classification, remote sensing analysis, time series images, and image segmentation. Researchers in this cluster develop and evaluate image-based methods for detecting and classifying oil spills using various data analysis techniques.
- −
- Cluster 6: This cluster centers around pixel value, network development, polarimetric features, remote sensing, and Terrasar X images. Researchers in this cluster use polarimetric features of Terrasar X images and other remote sensing data to develop and optimize network-based approaches for detecting oil spills.
- −
- Cluster 7: It deals with performance measures, sea surface, biogenic slick, polarimetric synthetic aperture radar images, and original SAR images. Researchers in this cluster develop and evaluate performance measures for detecting oil spills, taking into account various factors that affect detection accuracy, such as biogenic slicks and polarimetric SAR images.
- −
- Cluster 8: This one focuses on data processing, improved fully convolutional network (FCN), satellite images, discrimination, and oil spill events. Researchers in this cluster use FCN-based methods for processing satellite images and detecting oil spills, considering factors that affect discrimination accuracy.
- −
- Cluster 9: This cluster revolves around satellite data, wind conditions, film thickness, optimal classifier, and field observation. Researchers in this cluster develop and evaluate various methods for detecting and classifying oil spills using satellite data, considering factors that affect detection accuracy, such as wind conditions and oil film thickness.
- −
- Cluster 10: The final cluster centers around support vector machines (SVM), stage, target type, network process, and optimum network. Researchers in this cluster explore SVM-based methods for detecting and classifying oil spills at different stages, dealing with different types of targets, and optimizing network processes for better detection accuracy.
3.2. Country Contribution
3.3. Most Influential Publication
3.4. Influential Journals
3.5. Authors Contributing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasconcelos, R.N.; Cunha Lima, A.T.; Lentini, C.A.D.; Miranda, G.V.; Mendonça, L.F.; Silva, M.A.; Cambuí, E.C.B.; Lopes, J.M.; Porsani, M.J. Oil Spill Detection and Mapping: A 50-Year Bibliometric Analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Homayouni, S.; Mohammadimanesh, F.; Dabboor, M. Oil Spill Detection from Synthetic Aperture Radar Earth Observations: A Meta-Analysis and Comprehensive Review. GIsci. Remote Sens. 2021, 58, 1022–1051. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of Oil Spill Remote Sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Alpers, W.; Holt, B.; Zeng, K. Oil Spill Detection by Imaging Radars: Challenges and Pitfalls. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1522–1525. [Google Scholar]
- Topouzelis, K.N. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [Green Version]
- Picou, J.S.; Gill, D.A.; Dyer, C.L.; Curry, E.W. Disruption and Stress in an Alaskan Fishing Community: Initial and Continuing Impacts of the Exxon Valdez Oil Spill. Organ. Environ. 1992, 6, 235–257. [Google Scholar] [CrossRef]
- Lopes, J.M.; Lentini, C.A.D.; Mendonça, L.F.F.; Cunha Lima, A.T.; Vasconcelos, R.N.; Silva, A.X.; Porsani, M.J. Absorbed Dose Rate for Marine Biota Due to the Oil Spilled Using ICRP Reference Animal and Monte Carlo Simulation. Appl. Radiat. Isot. 2022, 188, 110354. [Google Scholar] [CrossRef]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore Oil Spill Response Practices and Emerging Challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef]
- Lawa, R.J.; Kelly, C. The Impact of the “Sea Empress” Oil Spill. Aquat. Living Resour. 2004, 17, 389–394. [Google Scholar] [CrossRef] [Green Version]
- ITOPF. ITOPF Oil Tanker Spill Statistics 2019; ITOPF: London, UK, 2019. [Google Scholar]
- Roser, M. Oil Spills. Available online: https://ourworldindata.org/oil-spills (accessed on 26 September 2020).
- ICSMD-The International Charter Space and Major Disasters. Oil Spills Disasters charter. Available online: https://disasterscharter.org/ (accessed on 1 May 2023).
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Bayindir, C.; Frost, J.D.; Barnes, C.F. Assessment and Enhancement of SAR Noncoherent Change Detection of Sea-Surface Oil Spills. IEEE J. Ocean. Eng. 2018, 43, 211–220. [Google Scholar] [CrossRef]
- Salberg, A.B.; Rudjord, Ø.; Solberg, A.H.S. Oil Spill Detection in Hybrid-Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6521–6533. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.H.S. Oil Spill Detection by Satellite Remote Sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Gens, R. Oceanographic Applications of SAR Remote Sensing. GIsci. Remote Sens. 2008, 45, 275–305. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the Art Satellite and Airborne Marine Oil Spill Remote Sensing: Application to the BP Deepwater Horizon Oil Spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.N.; Psyllos, A. Oil Spill Feature Selection and Classification Using Decision Tree Forest on SAR Image Data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Li, K.; Yu, H.; Xu, Y.; Luo, X. Detection of Marine Oil Spills Based on HOG Feature and SVM Classifier. J. Sens. 2022, 2022, 3296495. [Google Scholar] [CrossRef]
- Dong, Z.-M.; Guo, L.-X.; Zeng, J.-K.; Zhou, X.-B. Oil-Spills Detection in Net-Sar Radar Images Using Support Vector Machine. Open Autom. Control. Syst. J. 2015, 7, 1958–1962. [Google Scholar] [CrossRef] [Green Version]
- Conceição, M.R.A.; Mendonça, L.F.F.; Lentini, C.A.D.; Lima, A.T.C.; Lopes, J.M.; Vasconcelos, R.N.; Gouveia, M.B.; Porsani, M.J. Sar Oil Spill Detection System through Random Forest Classifiers. Remote Sens. 2021, 13, 2044. [Google Scholar] [CrossRef]
- Lentini, C.A.D.; de Mendonça, L.F.F.; Conceição, M.R.A.; Lima, A.T.C.; de Vasconcelos, R.N.; Porsani, M.J. Comparison between Oil Spill Images and Look-Alikes: An Evaluation of SAR-Derived Observations of the 2019 Oil Spill Incident along Brazilian Waters. An. Acad. Bras. Cienc. 2022, 94, 1. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.N.; Lentini, C.A.D.; Cunha Lima, A.T.; Mendonça, L.F.F.; Miranda, G.V.; Cambuí, E.C.B.; Costa, D.P.; Duverger, S.G.; Gouveia, M.B.; Lopes, J.M.; et al. Oil Spill Detection Based on Texture Analysis: How Does Feature Importance Matter in Classification? Int. J. Remote Sens. 2022, 43, 4045–4064. [Google Scholar] [CrossRef]
- Del Frate, F.; Petrocchi, A.; Lichtenegger, J.; Calabresi, G. Neural Networks for Oil Spill Detection Using ERS-SAR Data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2282–2287. [Google Scholar] [CrossRef] [Green Version]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil Spill Identification from Satellite Images Using Deep Neural Networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Pineda, O.; MacDonald, I.R.; Li, X.; Jackson, C.R.; Pichel, W.G. Oil Spill Mapping and Measurement in the Gulf of Mexico with Textural Classifier Neural Network Algorithm (TCNNA). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2517–2525. [Google Scholar] [CrossRef]
- Singha, S.; Bellerby, T.J.; Trieschmann, O. Satellite Oil Spill Detection Using Artificial Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2355–2363. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Singha, S.; Mayerle, R. A Deep Learning Based Oil Spill Detector Using Sentinel-1 SAR Imagery. Int. J. Remote Sens. 2022, 43, 4287–4314. [Google Scholar] [CrossRef]
- Shaban, M.; Salim, R.; Abu Khalifeh, H.; Khelifi, A.; Shalaby, A.; El-Mashad, S.; Mahmoud, A.; Ghazal, M.; El-Baz, A. A Deep-Learning Framework for the Detection of Oil Spills from SAR Data. Sensors 2021, 21, 2351. [Google Scholar] [CrossRef]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [Green Version]
- Huby, A.A.; Sagban, R.; Alubady, R. Oil Spill Detection Based on Machine Learning and Deep Learning: A Review. In Proceedings of the 2022 5th International Conference on Engineering Technology and its Applications (IICETA), Al-Najaf, Iraq, 31 May–1 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 85–90. [Google Scholar]
- Cresson, R. Deep Learning for Remote Sensing Images with Open Source Software, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; Volume 1, ISBN 9781003020851. [Google Scholar]
- Andres, A. Measuring Academic Research. Measuring Academic Research 2009; Woodhead Publishing Limited: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- De Bellis, N. (Ed.) Leadership Lessons for Health Care Providers; Elsevier: Lanham, MD, USA, 2017; ISBN 9780128018668. [Google Scholar]
- Vasconcelos, R.N.; Costa, D.P.; Duverger, S.G.; Lobão, J.S.B.; Cambuí, E.C.B.; Lentini, C.A.D.; Lima, A.T.C.; Schirmbeck, J.; Mendes, D.T.; Rocha, W.J.S.F.; et al. Bibliometric Analysis of Surface Water Detection and Mapping Using Remote Sensing in South America. Scientometrics 2023, 128, 1667–1688. [Google Scholar] [CrossRef]
- Santana, M.M.M.; Mariano-Neto, E.; Vasconcelos, R.N.; Dodonov, P.; Medeiros, J.M.M. Mapping the Research History, Collaborations and Trends of Remote Sensing in Fire Ecology. Scientometrics 2021, 126, 1359–1388. [Google Scholar] [CrossRef]
- Ullah, R.; Asghar, I.; Griffiths, M.G. An Integrated Methodology for Bibliometric Analysis: A Case Study of Internet of Things in Healthcare Applications. Sensors 2022, 23, 67. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, F.T.; Potenza, M.R. The Scientific Landscape of November 23rd, 1980 Irpinia-Basilicata Earthquake: Taking Stock of (Almost) 40 Years of Studies. Geosciences 2020, 10, 482. [Google Scholar] [CrossRef]
- Roldan-Valadez, E.; Salazar-Ruiz, S.Y.; Ibarra-Contreras, R.; Rios, C. Current Concepts on Bibliometrics: A Brief Review about Impact Factor, Eigenfactor Score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-Index, and Alternative Metrics. Ir. J. Med. Sci. 2019, 188, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Blainey, S.; Sun, C.; Jing, P. A Literature Review on Accessibility Using Bibliometric Analysis Techniques. J. Transp. Geogr. 2020, 87, 102810. [Google Scholar] [CrossRef]
- Elsevier Content—How Scopus Works—Scopus—|Elsevier Solutions. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (accessed on 26 September 2020).
- van Eck, N.J.; Waltman, L. Bibliometric Mapping of the Computational Intelligence Field. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2007, 15, 625–645. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L.; Hofmann, M. Text Mining and Visualization; Chisholm, A., Ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; ISBN 9780429161971. [Google Scholar]
- Van Eck, N.J.; Waltman, L.; Van Den Berg, J.; Kaymak, U. Visualizing the Computational Intelligence Field. IEEE Comput. Intell. Mag. 2006, 1, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Team, R.C. The R Project for Statistical Computing. 2023, pp. 1–12. Available online: http://www.R-Project.Org/ (accessed on 1 May 2023).
- R Core Team R. A Language and Environment for Statistical Computing; R Core Team R: Vienna, Austria, 2020. [Google Scholar]
- RStudio RStudio|Open Source & Professional Software for Data Science Teams—RStudio. Available online: https://rstudio.com/ (accessed on 26 September 2020).
- Wickham, H. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, R package version 3.6.1; R Core Team R: Vienna, Austria, 2018. [CrossRef] [Green Version]
- Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A Review of Machine Learning Techniques Using Decision Tree and Support Vector Machine. In Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA), Pune, India, 12–13 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7. [Google Scholar]
- Chen, R.; Jia, B.; Ma, L.; Xu, J.; Li, B.; Wang, H. Marine Radar Oil Spill Extraction Based on Texture Features and BP Neural Network. J. Mar. Sci. Eng. 2022, 10, 1904. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z. Marine Oil Spill Detection from SAR Images Based on Attention U-Net Model Using Polarimetric and Wind Speed Information. Int. J. Environ. Res Public Health 2022, 19, 2315. [Google Scholar] [CrossRef]
- Margarita, F.; Nishchhal, N. Verification of Marine Oil Spills Using Aerial Images Based on Deep Learning Methods. Inform. Autom. 2022, 21, 937–962. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Zhang, Y.; Li, J.; Zeng, Z. Oil Spill Detection with Dual-Polarimetric Sentinel-1 SAR Using Superpixel-Level Image Stretching and Deep Convolutional Neural Network. Remote Sens. 2022, 14, 3900. [Google Scholar] [CrossRef]
- Du, K.; Ma, Y.; Jiang, Z.; Lu, X.; Yang, J. Detection of Oil Spill Based on CBF-CNN Using HY-1C CZI Multispectral Images. Acta Oceanol. Sin. 2022, 41, 166–179. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Perrie, W.; Lu, Y.; Wang, C. A Novel Deep Learning Method for Marine Oil Spill Detection from Satellite Synthetic Aperture Radar Imagery. Mar. Pollut. Bull. 2022, 179, 113666. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, H.; Li, Y.; Liu, B.; Liu, P. Oil Spill Identification in Radar Images Using a Soft Attention Segmentation Model. Remote Sens. 2022, 14, 2180. [Google Scholar] [CrossRef]
- Rousso, R.; Katz, N.; Sharon, G.; Glizerin, Y.; Kosman, E.; Shuster, A. Automatic Recognition of Oil Spills Using Neural Networks and Classic Image Processing. Water 2022, 14, 1127. [Google Scholar] [CrossRef]
- Duan, P.H.; Xie, Z.J.; Kang, X.D.; Li, S.T. Self-Supervised Learning-Based Oil Spill Detection of Hyperspectral Images. Sci. China Technol. Sci. 2022, 65, 793–801. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, J.; Xu, C.; Zhang, X.; Wang, C.; Li, B. A New Oil Spill Detection Algorithm Based on Dempster-Shafer Evidence Theory. J. Oceanol. Limnol. 2022, 40, 456–469. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Y.; Hu, Y.; Jiang, Z.; Zhang, J.; Wan, J.; Li, Z. Decision Fusion of Deep Learning and Shallow Learning for Marine Oil Spill Detection. Remote Sens. 2022, 14, 666. [Google Scholar] [CrossRef]
- Mahmoudi Ghara, F.; Shokouhi, S.B.; Akbarizadeh, G. A New Technique for Segmentation of the Oil Spills from Synthetic-Aperture Radar Images Using Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8834–8844. [Google Scholar] [CrossRef]
- Yanling, D.; Jianhua, C.; Quanmiao, W.; Dongmei, H. Marine Oil-Spill Detection in Multi-Polarization Image-Based SAR on Improved FCN. Laser Optoelectron. Prog. 2022, 59. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; Wu, P.; Kong, P. Oil Spill Detection Based on Deep Convolutional Neural Networks Using Polarimetric Scattering Information from Sentinel-1 SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, J.; Ma, Y.; Mao, X. Hyperspectral Remote Sensing Detection of Marine Oil Spills Using an Adaptive Long-Term Moment Estimation Optimizer. Remote Sens. 2022, 14, 157. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Lu, P.; Ge, Y.; Atkinson, P.M. Fast and Slow Changes Constrained Spatio-Temporal Subpixel Mapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Dasari, K.; Anjaneyulu, L.; Nadimikeri, J. Application of C-Band Sentinel-1A SAR Data as Proxies for Detecting Oil Spills of Chennai, East Coast of India. Mar. Pollut. Bull. 2022, 174, 113182. [Google Scholar] [CrossRef]
- De Laurentiis, L.; Jones, C.E.; Holt, B.; Schiavon, G.; Del Frate, F. Deep Learning for Mineral and Biogenic Oil Slick Classification with Airborne Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8455–8469. [Google Scholar] [CrossRef]
- Fan, Y.; Rui, X.; Zhang, G.; Yu, T.; Xu, X.; Poslad, S. Feature Merged Network for Oil Spill Detection Using Sar Images. Remote Sens. 2021, 13, 3174. [Google Scholar] [CrossRef]
- Li, Y.; Lyu, X.; Frery, A.C.; Ren, P. Oil Spill Detection with Multiscale Conditional Adversarial Networks with Small-Data Training. Remote Sens. 2021, 13, 2378. [Google Scholar] [CrossRef]
- Wang, B.; Shao, Q.; Song, D.; Li, Z.; Tang, Y.; Yang, C.; Wang, M. A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill. Remote Sens. 2021, 13, 1568. [Google Scholar] [CrossRef]
- Park, S.; Ahn, M.H.; Li, C.; Kim, J.; Jeon, H.; Kim, D.J. Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and Cnn Architectures Using Sentinel-1 Sar Data. Korean J. Remote Sens. 2021, 37, 1475–1490. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Baek, W.K.; Jung, H.S.; Kim, D. Oil Spill Detection of Kerch Strait in November 2007 from Dual-Polarized TerraSAR-X Image Using Artificial and Convolutional Neural Network Regression Models. J. Coast. Res. 2020, 102, 137–144. [Google Scholar] [CrossRef]
- Temitope Yekeen, S.; Balogun, A.L.; Wan Yusof, K.B. A Novel Deep Learning Instance Segmentation Model for Automated Marine Oil Spill Detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Espeseth, M.M.; Borch, N. Large-Scale Detection and Categorization of Oil Spills from Sar Images with Deep Learning. Remote Sens. 2020, 12, 2260. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Wei, J.; Li, J. Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on Superpixel Model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A Novel Marine Oil Spillage Identification Scheme Based on Convolution Neural Network Feature Extraction from Fully Polarimetric SAR Imagery. IEEE Access 2020, 8, 59801–59820. [Google Scholar] [CrossRef]
- Park, S.H.; Jung, H.S.; Lee, M.J. Oil Spill Mapping from Kompsat-2 High-Resolution Image Using Directional Median Filtering and Artificial Neural Network. Remote Sens. 2020, 12, 253. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.; Jia, G.; Cai, Y. A New Approach to Oil Spill Detection That Combines Deep Learning with Unmanned Aerial Vehicles. Comput. Ind. Eng. 2019, 135, 1300–1311. [Google Scholar] [CrossRef]
- Yang, J.F.; Wan, J.H.; Ma, Y.; Zhang, J.; Bin Hu, Y.; Jiang, Z.C. Oil Spill Hyperspectral Remote Sensing Detection Based on DCNN with Multi-Scale Features. J. Coast. Res. 2019, 90, 332–339. [Google Scholar] [CrossRef]
- Park, S.H.; Jung, H.S.; Lee, M.J.; Lee, W.J.; Choi, M.J. Oil Spill Detection from Planetscope Satellite Image: Application to Oil Spill Accident near Ras Al Zour Area, Kuwait in August 2017. J. Coast. Res. 2019, 90, 251–260. [Google Scholar] [CrossRef]
- Guo, H.; Wei, G.; An, J. Dark Spot Detection in SAR Images of Oil Spill Using Segnet. Appl. Sci. 2018, 8, 2670. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Yuan, Z.; Guo, H.; Pan, H.; Guo, J. Marine Oil Spill Detection Based on the Comprehensive Use of Polarimetric SAR Data. Sustainability 2018, 10, 4408. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Hidalgo, M.; Gallego, A.J.; Gil, P.; Pertusa, A. Two-Stage Convolutional Neural Network for Ship and Spill Detection Using SLAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5217–5230. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhang, H.; Luo, C.; Qi, H.; Ren, P. Oil Spill Segmentation via Adversarial F-Divergence Learning. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4973–4988. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H.S. Mapping Oil Spills from Dual-Polarized Sar Images Using an Artificial Neural Network: Application to Oil Spill in the Kerch Strait in November 2007. Sensors 2018, 18, 2237. [Google Scholar] [CrossRef] [Green Version]
- Gallego, A.J.; Gil, P.; Pertusa, A.; Fisher, R.B. Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders. Sensors 2018, 18, 797. [Google Scholar] [CrossRef] [Green Version]
- Mera, D.; Fernández-Delgado, M.; Cotos, J.M.; Viqueira, J.R.R.; Barro, S. Comparison of a Massive and Diverse Collection of Ensembles and Other Classifiers for Oil Spill Detection in SAR Satellite Images. Neural Comput. Appl. 2017, 28, 1101–1117. [Google Scholar] [CrossRef]
- Senthil Murugan, J.; Parthasarathy, V. AETC: Segmentation and Classification of the Oil Spills from SAR Imagery. Environ. Forensics 2017, 18, 258–271. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Sun, G.; Zhang, Y. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images. Appl. Sci. 2017, 7, 968. [Google Scholar] [CrossRef]
- Li, Y.; Cui, C.; Liu, Z.; Liu, B.; Xu, J.; Zhu, X.; Hou, Y. Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images. Arch. Environ. Contam. Toxicol. 2017, 73, 154–169. [Google Scholar] [CrossRef]
- Singha, S.; Ressel, R. Offshore Platform Sourced Pollution Monitoring Using Space-Borne Fully Polarimetric C and X Band Synthetic Aperture Radar. Mar. Pollut. Bull. 2016, 112, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Ma, L. Support Tucker Machines Based Marine Oil Spill Detection Using SAR Images. Indian J. Geo Mar. Sci. 2016, 45, 1445–1449. [Google Scholar]
- Lee, M.S.; Park, K.A.; Lee, H.R.; Park, J.J.; Kang, C.K.; Lee, M. Detection and Dispersion of Thick and Film-Like Oil Spills in a Coastal Bay Using Satellite Optical Images. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2016, 9, 5139–5150. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Swarnalatha, P.; Rukmini, S. A Neural Network Classification Approach for Oil Spill Detection on Sar Images. IIOAB J. 2016, 7, 225–235. [Google Scholar]
- Guo, Y.; Wang, X.; Zhang, H. Oil Spill Detection by SAR Images Based on Human Perception. Wuhan Daxue Xuebao Xinxi Kexue Ban Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 395–401. [Google Scholar] [CrossRef]
- Taravat, A.; Oppelt, N. Adaptive Weibull Multiplicative Model and Multilayer Perceptron Neural Networks for Dark-Spot Detection from SAR Imagery. Sensors 2014, 14, 22798–22810. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, J.; Brenning, A. A Comparative Study of Different Classification Techniques for Marine Oil Spill Identification Using RADARSAT-1 Imagery. Remote Sens. Environ. 2014, 141, 14–23. [Google Scholar] [CrossRef]
- Singha, S.; Velotto, D.; Lehner, S. Near Real Time Monitoring of Platform Sourced Pollution Using TerraSAR-X over the North Sea. Mar. Pollut. Bull 2014, 86, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Taravat, A.; Latini, D.; Del Frate, F. Fully Automatic Dark-Spot Detection from Sar Imagery with the Combination of Nonadaptive Weibull Multiplicative Model and Pulse-Coupled Neural Networks. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2427–2435. [Google Scholar] [CrossRef]
- Shahsavarhaghighi, S.; Sahebi, M.R.; Valdanzoej, M.J.; Haddadi, G.A. A Comparison of IEM and SPM Model for Oil Spill Detection Using Inversion Technique and Radar Data. J. Indian Soc. Remote Sens. 2013, 41, 425–431. [Google Scholar] [CrossRef]
- Yanling, L. A Neural Network Filter to Estimate the Doa of Small Targets. J. Theor. Appl. Inf. Technol. 2013, 49. [Google Scholar]
- Del Frate, F.; Latini, D.; Pratola, C.; Palazzo, F. PCNN for Automatic Segmentation and Information Extraction from X-Band SAR Imagery. Int. J. Image Data Fusion 2013, 4, 75–88. [Google Scholar] [CrossRef]
- Vespe, M.; Posada, M.; Ferraro, G.; Greidanus, H. Data Fusion of Sar Derived Features and Ancillary Information for Automatic Oil Spill Detection. Fresenius Environ. Bull. 2011, 20, 36–43. [Google Scholar]
- Ozkan, C.; Ozturk, C.; Sunar, F.; Karaboga, D. The Artificial Bee Colony Algorithm in Training Artificial Neural Network for Oil Spill Detection. Neural Netw. World 2011, 21, 473–492. [Google Scholar] [CrossRef]
- Vasilescu, J.; Marmureanu, L.; Carstea, E.; Cristescu, C.P. Oil Spills Detection from Fluorescence Lidar Measurements. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2010, 72, 149–154. [Google Scholar]
- Topouzelis, K.; Karathanassi, V.; Pavlakis, P.; Rokos, D. Potentiality of Feed-Forward Neural Networks for Classifying Dark Formations to Oil Spills and Look-Alikes. Geocarto Int. 2009, 24, 179–191. [Google Scholar] [CrossRef]
- Topouzelis, K.; Stathakis, D.; Karathanassi, V. Investigation of Genetic Algorithms Contribution to Feature Selection for Oil Spill Detection. Int. J. Remote Sens. 2009, 30, 611–625. [Google Scholar] [CrossRef]
- Topouzelis, K.; Karathanassi, V.; Pavlakis, P.; Rokos, D. Dark Formation Detection Using Neural Networks. Int. J. Remote Sens. 2008, 29, 4705–4720. [Google Scholar] [CrossRef]
- Obi, S.; Okajima, K.; Koizumi, Y.; Murata, M. Introduction of Infomax Learning Algorithm and Application for Oil Spill Detection in SAR Images Introduction of Infomax Learning Algorithm and Application for Oil Spill Detection in SAR Images Non-Member. IEEJ Trans. Fundam. Mater. 2006, 126, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Taravat, A.; Del Frate, F. Development of Band Ratioing Algorithms and Neural Networks to Detection of Oil Spills Using Landsat ETM+ Data. EURASIP J. Adv. Signal. Process. 2012, 2012, 107. [Google Scholar] [CrossRef]
- Ziemke, T. Radar Image Segmentation Using Recurrent Artificial Neural Networks. Pattern Recognit. Lett. 1996, 17, 319–334. [Google Scholar] [CrossRef]
Questions | Analysis | Source Data |
---|---|---|
How do OSDMDL study publication trends behave? | General statistics/word Co-occurrence network/country collaboration spatial network | All papers |
Which countries stand out in terms of OSDMDL production? | General statistics/word Co-occurrence network/country collaboration spatial network | All papers |
What are the most influential papers in the OSDMDL field? | General description tables | Most cited papers |
Which journals are most prominent in terms of the number of articles published in the OSDMDL field? | General statistics/general description and citation tables | All papers |
What is the overall picture of collaboration between countries regarding the OSDMDL field? | General statistics/general description and citation tables/country collaboration spatial network | All papers |
What is the central theme, focus, and approach most prominent in research in the OSDMDL field? | Word Co-occurrence network/ general description | All |
Main Information | |||||
---|---|---|---|---|---|
Timespan | 1996:2022 | 1996:1999 | 2000:2009 | 2010:2019 | 2020:2022 |
Sources (Journals) | 40 | 1 | 4 | 24 | 17 |
Documents | 70 | 1 | 5 | 33 | 31 |
Annual growth rate % | 11.76 | 0 | 8.01 | 16.65 | 60.36 |
Document contents | |||||
AUTHORS | |||||
Authors | 225 | 1 | 13 | 107 | 120 |
Authors of single-authored docs | 3 | 1 | 0 | 2 | 0 |
Authors collaboration | |||||
Single-authored docs | 3 | 1 | 0 | 2 | 0 |
Co-authors per doc | 4.07 | 1 | 3.8 | 3.73 | 4.58 |
International co-authorships % | 15.71 | 0 | 60 | 12.12 | 12.9 |
Document types | |||||
article | 70 | 1 | 5 | 33 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.D.; Miranda, J.G.V.; de Mendonça, L.F.F.; Lopes, J.M.; Santana, M.M.M.; Cambuí, E.C.B.; Souza, D.T.M.; Costa, D.P.; et al. Deep Learning-Based Approaches for Oil Spill Detection: A Bibliometric Review of Research Trends and Challenges. J. Mar. Sci. Eng. 2023, 11, 1406. https://doi.org/10.3390/jmse11071406
Vasconcelos RN, Lima ATC, Lentini CAD, Miranda JGV, de Mendonça LFF, Lopes JM, Santana MMM, Cambuí ECB, Souza DTM, Costa DP, et al. Deep Learning-Based Approaches for Oil Spill Detection: A Bibliometric Review of Research Trends and Challenges. Journal of Marine Science and Engineering. 2023; 11(7):1406. https://doi.org/10.3390/jmse11071406
Chicago/Turabian StyleVasconcelos, Rodrigo N., André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, José M. Lopes, Mariana M. M. Santana, Elaine C. B. Cambuí, Deorgia T. M. Souza, Diego P. Costa, and et al. 2023. "Deep Learning-Based Approaches for Oil Spill Detection: A Bibliometric Review of Research Trends and Challenges" Journal of Marine Science and Engineering 11, no. 7: 1406. https://doi.org/10.3390/jmse11071406