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Abstract: Classification algorithms for automatically detecting sea surface oil spills from spaceborne
Synthetic Aperture Radars (SARs) can usually be regarded as part of a three-step processing framework,
which briefly includes image segmentation, feature extraction, and target classification. A Deep
Convolutional Neural Network (DCNN), named the Oil Spill Convolutional Network (OSCNet), is
proposed in this paper for SAR oil spill detection, which can do the latter two steps of the three-step
processing framework. Based on VGG-16, the OSCNet is obtained by designing the architecture and
adjusting hyperparameters with the data set of SAR dark patches. With the help of the big data set
containing more than 20,000 SAR dark patches and data augmentation, the OSCNet can have as many
as 12 weight layers. It is a relatively deep Deep Learning (DL) network for SAR oil spill detection. It is
shown by the experiments based on the same data set that the classification performance of OSCNet
has been significantly improved compared to that of traditional machine learning (ML). The accuracy,
recall, and precision are improved from 92.50%, 81.40%, and 80.95% to 94.01%, 83.51%, and 85.70%,
respectively. An important reason for this improvement is that the distinguishability of the features
learned by OSCNet itself from the data set is significantly higher than that of the hand-crafted features
needed by traditional ML algorithms. In addition, experiments show that data augmentation plays an
important role in avoiding over-fitting and hence improves the classification performance. OSCNet has
also been compared with other DL classifiers for SAR oil spill detection. Due to the huge differences in
the data sets, only their similarities and differences are discussed at the principle level.

Keywords: Synthetic Aperture Radar (SAR); Deep Convolutional Neural Network (DCNN); oil spill
detection; oil spills; lookalikes; dark patch

1. Introduction

Oil spills on the sea surface have become major environmental and public safety issues that cannot
be ignored. With the widespread attention of the development and utilization of marine resources, the
marine transportation industry and the offshore oil and gas industry have developed rapidly in recent
years. However, oil spill events from ships and offshore oil platforms frequently occur in various seas
all over the world, which results in huge ecological and property losses [1].

Oil spill accidents often occur in areas with complex marine environments. Therefore, it is hard to
directly enter the polluted area to clean or make observations in the early stage. Such events usually last
days [2], weeks [3], or even months [4], so continuous observations are needed to study the spreading of
oil spills and how much they impact environmental safety [5]. The Synthetic Aperture Radar (SAR) can
be regarded as a sensor used to measure the sea surface roughness. Sea surfaces covered with oil films
appear dark in SAR images because the capillary waves and short gravity waves that contribute to the
sea surface roughness are damped by the surface tension of oil films [6]. This gives spaceborne SARs the
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possibility to monitor oil spills in large areas in a highly efficient and relatively cheap way. Compared
with spaceborne optical and infrared sensors, spaceborne SARs have obvious advantages in marine oil
spill detection because they yield data independent of the time of day and weather conditions [7].

However, many oceanic and atmospheric phenomena other than oil spills may also reduce the sea
surface roughness and appear dark in SAR images. A typical processing framework for automatic SAR
oil spill detection usually contains roughly three steps. The first step is to obtain dark patches from
SAR images by an image segmentation algorithm, the second step is to extract features from these dark
patches to form a feature vector set, and the third step is to train a classifier using the feature vector
set. The obtained classifier can then be used to identify oil spills and lookalikes in the dark patches
extracted from SAR images by the same segmentation algorithm [8].

In the last two decades, many classification algorithms have been developed for SAR oil spill detection
based on traditional machine learning (ML), such as the linear model [9], Decision Trees [10–12], Artificial
Neural Networks (ANNs) [13–17], Support Vector Machines (SVMs) [18–20], Bayesian Classifiers [21,22],
Ensemble Learning [14], and so on. These methods have demonstrated their own effectiveness based on
their respective data. However, we can only evaluate these algorithms perceptually, and it is difficult to
directly compare their classification performance indicators due to the various data sets they use.

What the ML approaches essentially do is seek a statistically optimal decision surface in the feature
space, and mathematically, it comes down to an optimization problem. For a specific classification
problem, the more data there is, the more stable the statistical characteristics, and the more generalizable
the obtained decision surface and corresponding classification performance indicators in the problem
domain following the same statistical characteristics. In this sense, the classification performance
indicators of [14] are relatively reliable, because its data set includes 4843 oil spills and 18,925 lookalikes
extracted from 336 SAR images, which is the largest data set used by the ML classifiers mentioned
above. In [14], an Area weighted Adaboost Multi-Layer Perceptron (AAMLP) was proposed, which
achieved a classification accuracy, recall, and precision of 92.50%, 81.40%, and 80.95%, respectively.

In recent years, some Deep Learning (DL) methods have been used for SAR oil spill detection.
Huang et al. [23] proposed a three-layer Deep Belief Network (DBN) with a Gray-Level Co-occurrence
Matrix (GLCM) as the input to distinguish whether a piece of SAR sample image is oil spill, lookalike,
or sea water. Here, the GLCM was calculated from the sample image. The DBN was trained with 240
samples and obtained a recognition rate of 91.25%. Guo et al. [24] used a Convolutional Neural Network
(GCNN) to distinguish crude oil, plant oil, and oil emulsion. The GCNN was trained with 5400 samples
and obtained a recognition rate of 91.33%. Gallego et al. [25] designed a two-stage Convolutional Neural
Network (TSCNN) to classify the pixels of a Side-Looking Airborne Radar (SLAR) image into ship, oil
spill, coastal, or sea water. This is actually a segmentation algorithm since it works at a pixel level. The
TSCNN achieved an accuracy of 98%, recall of 73%, and precision of 52% for oil spill detection based
on a data set of 23 SLAR images. Gallego et al. [26] proposed a very deep Residual Encoder-Decoder
Network (RED-Net) to segment out the oil spill from SLAR, which obtained a recall value of 92.92%.

Although there is no accepted definition for how many layers constitute a "deep" learner, a typical
deep network should typically include at least four or five layers [27]. From this point of view, the
layers of the DL networks mentioned above are all relatively shallow. So far, we have not seen a
DL network for SAR oil spill detection with more than seven weight layers (including convolutional
layers and Fully Connected layers (FCs)). Seven is the layer number of LeNet—the first famous DL
network [28]. The depth of the DL network is most likely related to the size of the data sets used. This
issue will be discussed in Section 5.

In this paper, a Deep Convolutional Neural Network (DCNN) with a sufficient depth is proposed
to classify SAR dark patches for oil spill detection as an upgrade solution of the AAMLP used in the
automatic SAR oil spill detection system [14].

We will use the same data set as that of AAMLP to construct the proposed DCNN. Firstly, this
data set is relatively large, and the number of samples can be increased sufficiently to support a deeper
network through the data augmentation technique (see Section 5.4). Secondly, it provides a chance to
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compare the DL network with the traditional ML network based on the same relatively large data set
(see Section 5.3).

At present, there are four main branches of DL architecture, namely the Auto-Encoder (AE), the
Convolutional Neural Network (CNN), DBN, and the Recurrent Neural Network (RNN) [27]. Why CNN
is chosen in the proposed network lies in the outstanding performance of several well-known CNNs,
i.e., AlexNet [29], ZFNet [30], VGG-16, and VGG-19 [31], exhibited in the competition of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) from 2012 to 2014, and the successful application
of CNNs in the SAR oil spill detection research mentioned above. Therefore, it can be expected that
based on the same dark patch data set, a DL network with a better classification performance than
that of the traditional ML network can be constructed. A distinctive capability of CNN is that it can
learn to extract features directly from the data itself through training, while traditional ML methods
require “hand-crafted” features [27]. It can be seen in Section 5.5 that the distinguishability of the
features automatically extracted by the proposed DCNN in this paper is significantly better than the 77
hand-crafted features used by AAMLP. This is an important reason why the classification performance
of DCNN is superior to that of ML methods.

The flowchart employed to build the proposed DCNN is shown in Figure 1. First, the data set
of AAMLP is used to carry out transfer learning in three candidate networks, and then, the best one
is taken as the basic network architecture. Next, the network architecture and hyperparameters are
adjusted on this basis. The network no longer uses transfer learning, but is trained from scratch,
because those adjustment procedures involve changes in both the architecture and hyperparameters.
We refer to the resulting network as the Oil Spill Convolutional Network (OSCNet). It should be noted
that data augmentation is only applied to the training data set. We believe that it is more objective to
evaluate the performance of the classifier using the original test data set.
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Figure 1. The design flowchart of the Oil Spill Convolutional Network (OSCNet) based on candidate
deep convolutional neural networks (DCNNs).

The rest of the paper is organized as follows: Section 2 introduces the source and composition of
the SAR oil spill dark patch data set and the relevant preprocessing methods; in Section 3, the basic
network architecture is selected from three candidate DCNNs by transfer learning; Section 4 describes
how the architecture is determined and how the hyperparameters are adjusted for establishing the
OSCNet; in Section 5, the experimental results are demonstrated and analyzed, and the comparisons of
OSCNet with other classifiers are made; finally, the conclusion and outlooks are given in Section 6.

2. Data

2.1. Data Set

In 2011, a serious oil spill accident occurred in the Bohai Bay of China, which polluted more
than 840 km2 of sea water and forced the closure of multiple offshore oil and gas platforms. In 2016,
an operational automatic SAR oil spill detection system, named CNOOCOM for the China National
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Offshore Oil Corporation (CNOOC), was developed by the Ocean Remote Sensing Institute, Ocean
University of China (ORSI/OUC) [14]. The system implemented the automatic downloading or manual
acquisition of multi-source SAR data, sea-land segmentation, image preprocessing, dark patch extraction
by an adaptive threshold segmentation, post-processing of segmentation, feature extraction of dark
patches, AAMLP classifiers, and so on. Once an SAR image is received, the system automatically
generates a thematic map and reports oil spills found on the SAR image after the series of processing
steps described above within about 5 min. The data set used for training AAMLP is composed of
23,768 dark patches extracted from 336 multi-source SAR images by an adaptive threshold segmentation
algorithm based on multi-scale background estimation. These dark patches were labeled as 4843 oil
slicks and 18,925 lookalikes through an iterative procedure which combined machine and manual
classification. The data set covers a large spatial and temporal range, as shown in Table 1. Additionally,
many known big oil spill events, such as the BP oil spill and Bohai oil spill, are included in the data set.

Table 1. Information of original synthetic aperture radar (SAR) image sources.

Satellite/SAR Band Geography/Period Number

Envisat/C

Bohai Sea/2011.6–2011.8 10
China Sea/2002.11–2007.3 67

the Gulf of Mexico/2010.4–2010.7 45
European Seas, China

Sea/1994.10–2009.7 16

ERS-1,2/C China Sea/1992.9–2005.6 63
COSMO Sky-Med/X Bohai Sea/2011.6–2011.11 135

Total 336

The dark patch generation algorithm is quite complicated and will be introduced in detail in
another paper. However, in view of the fact that the data set in this paper is uniformly generated
from 336 SAR images using the image segmentation program, it is necessary to briefly introduce the
generation process.

First, this algorithm uses an iterative operation to estimate the image intensity component in the
sea area as a function of the incident angle. Taking this component as a criterion, the trends of the
image intensity with the angle can be eliminated to obtain many coarse dark patches. A series of
moving windows with a decreasing size are used to gradually refine the boundary of the dark patches.
A distinct advantage of this algorithm is that it is suitable for dark patches of different sizes. Finally, a
connected area composed of dark pixels is considered as a single dark patch.

Since an oil spill usually appears as several disconnected dark patches and each one is considered
independent, the number of oil spills established through this process is often greater than the number
of oil spills identified by experts. Unfortunately, due to the inherent complexity of the SAR image,
many small dark patches are inevitably introduced, making the number of dark patches extremely large.
To reduce the large number of non-oil dark patches, the image segmentation program also includes a
post-processing filtering chain based on simple rules. These rules must be loose enough to guarantee
that oil spills will not be removed. Therefore, even with the existence of the filter chain, many non-oil
dark patches are still retained. Some of them are not even lookalikes, but since they have become part
of the data set, we also consider them as lookalikes. After many post-processing efforts, we successfully
reduced the ratio of lookalikes to oil spills from about 100:1 to 3.9:1. This greatly reduced the imbalance
of the data set.

As part of the automatic oil spill detection system, the classifier has to process all dark patches
generated by the segmentation program when the system is running. Therefore, the data set used for
training the classifier must involve all dark patches generated from the 336 images by the segmentation
program, so as to ensure that the statistical characteristics of the data set are consistent with those of
dark patches to be processed by the classifier in the future.
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2.2. Input Size of DCNN

Each dark patch has to be re-sampled to a given size because the DCNN requires the size of the
input image to be fixed [32]. The re-sampled operation will change the aspect ratio of the samples.
In order to make the deformation as small as possible, we employed the input size of 64 × 64, which is
close to the mean value of the sample size, as shown in Figure 2. This size was used for all DCNN
experiments presented in this paper. The re-sampled operation is performed on-the-fly when a dark
patch image is fed to the network during training or evaluating. This facilitates superimposing the
samples on the original SAR image to visualize the classification results. In fact, the size of dark
patches varies in a very wide range, but as the size increases, the number of dark patches decreases
rapidly. The maximum size of an oil spill dark patch is 2136, corresponding to about 150 km, which
was extracted from a wide swath Envisat ASAR image acquired during the BP oil spill event in the
Gulf of Mexico in 2010. In order to show the size distribution more clearly, only samples with a size of
less than 300 are plotted.
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2.3. Preprocessing

Data set preprocessing is divided into two parts: Data set proportion allocation and data
augmentation. Data set proportion allocation is key to guaranteeing the data characteristics of dark
patch samples and the ability of network generalization. It is also the basis for a comparison with
AAMLP. Data augmentation is employed to maximize the advantage of our data set, without destroying
the original data feature distribution, so that the network can avoid over-fitting.

2.3.1. Data Set Proportion Allocation

The proportion of oil spills and lookalikes in the data set is determined by the content of the
SAR image and the image segmentation algorithm. The proportion is more dependent on the image
segmentation algorithm when the number of SAR images becomes large. Therefore, it is reasonable to
assume that the proportion of dark patches fed to the DCNN is statistically stable, since dark patches
are obtained for SAR images by a specific segmentation algorithm. For a given dark patch data set, it
should be split into a training set and a test set in such a way that both of them have the same proportion
as that of the full data set. For the data set in this study, the proportion of oil spills to lookalikes was
1:3.9. Therefore, we randomly picked out 2048 oil spills and 7988 lookalikes from 23,768 dark patches as
the test data set, and the remaining were used as the training data set.

2.3.2. Data Augmentation

What the training of DCNN actually does is adjust thousands of weights based on the training
data set and labels. In order to make all weights reach the optimal state as much as possible, the
number of samples in the training data set should match the number of network parameters [33]. Data
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augmentation is a technique used to improve the generalization ability of the network by increasing
the number of samples in the training set [34]. The noise induced by data augmentation also makes the
network more robust. Data augmentation has been widely used in the training process of common
DL classifiers [29–31]. Moreover, this method is also applied in [25,26]. Twelve operations of data
augmentation are used in our case to expand the training data set. The operations include Rotation
(7◦, 17◦, 27◦, 37◦, and 47◦), Shift(horizontal, H; vertical, V), Scale(H, V) and Flip (H, V, HV), Examples
of a typical dark patch sample with data augmentation are shown in Figure 3. The number of our
training set (13,722) was expanded to the order of 105-106 with data augmentation. The training was
done in the network with the original and expanded data set after the proposed network was obtained,
respectively, to validate the positive effect of data augmentation (see Section 5.4 for details).
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3. Determine the Basic Architecture of DCNNs

As shown in Figure 1, we firstly decided on a basic architecture, which was selected from AlexNet,
VGG-16, and VGG-19 by transfer learning with our oil spill data set. Here, transfer learning [35]
refers to fine tuning of the model parameters with the dark patch data set based on a model which
has already been well trained with the public data set, so as to quickly achieve a good classification
performance for our data set. Transfer learning requires an application domain similar to the original
one, but allows it to be a little different [36].

Pre-trained models for the three networks can be downloaded from the Tensorflow group of
Google on GitHub—an open source code hosting platform [37]. These pre-trained models contain
the network structures and all parameters and weights trained with public RGB data sets. Transfer
learning can actually be considered a special weight initialization method. In our experiments, the
SAR image was a one-channel gray image instead of a three-channel RGB image; dark patch images
were re-sampled to 64 × 64 on-the-fly before being fed to the network; and only two categories—oil
spill and lookalike—were focused on. Therefore, what we needed to do based on these downloaded
pre-trained models was to simply set their input image color channel number to 1, input image size to
64 × 64, and output category to 2, and then train further.

Transfer learning, as a fine-tuning technique, will not stop the training until the model test
accuracy is stable. It gives us the opportunity to check how many epochs the network takes to reach a
stable status. The training efficiency and classification accuracy obtained by the transfer learning of the
three networks—AlexNet, VGG-16, and VGG-19—are shown in Figure 4. Obviously, the classification
performance of VGG-16 and VGG-19 is better than that of AlexNet. VGG-16 and VGG-19 have almost
the same classification performance, but the latter converges slower than the former, which implies
that the additional three layers of VGG-19 compared to VGG-16 do not improve the classification
performance, but reduce the training efficiency. Therefore, VGG-16 was used as the basic structure for
further optimization in this study.
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4. The Proposed DCNN for SAR Oil Spill Detection

In this section, based on the results of Section 3, the network hierarchy is designed, which
includes the architecture of convolutional layers and Fully Connected layers (FCs). Then, the network
hyperparameters are adjusted so that they are suitable for classifying SAR dark patches. This involves
many comparative experiments using the data sets described in Section 2 with data augmentation.
In these experiments, the training will be started from scratch instead of using a pre-trained model,
since most attributes and hyperparameters, as well as network architecture, will be changed. These
comparative experiments only need coarse tuning, which uses a relatively small number of epochs
because its goal is to obtain the best value of hyperparameters instead of a well-trained network.

To use the control variable method to further determine attributes and hyperparameters, some
initial conditions are employed, as follows: (1) the activation function is ReLU, (2) the loss function is
softmax cross entropy, (3) dropout is 0.5, (4) the learning rate is 1e-4, (5) the batch size is 64, (6) weights
are initialized in a standard normal distribution, and (7) the optimizer is Stochastic Gradient Descent
(SGD) with momentum.

4.1. Structure of Convolutional Layers

According to the previous analysis, the size of input dark patches is 64 × 64, which is smaller
than 224 × 224—the input size of VGG-16 based on ImageNet. This difference implies that the new
network should be simpler than VGG-16 in terms of receptive fields. For a CNN, a Feature Map (FM) is
produced from an input image by applying a convolution kernel. The size of an FM can be expressed
as follows [38]:

M =
N + 2p− f

S
+ 1, (1)

where M, N, and f are the size of the FM, input image, and convolution kernel, respectively; S is the
stride; and p is the padding value.

The region of the original image where one pixel of an FM is mapped is called the receptive field
(RF) [39]. The size of the receptive field in the first layer is equal to the size of the convolution kernel.
Then, the size of the deeper layer receptive field can be iteratively calculated as follows:

lk = lk−1 + (( fk − 1) ×
k−1∏
i=1

Si), (2)

where lk is the receptive field size of the k-th layer, lk−1 is the receptive field size of the (k− 1)-th layer,
and Si is the stride size of the i-th layer.

When the receptive field of the final layer is closer to, but no larger than, the image region, it
is easier for convolution to obtain more information, so as to achieve a better capability of feature
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extraction [40]. This means that the new network should be designed so that the receptive field size of
the final layer is close to 64 × 64. Shown in Table 2 is the size of the FM and RF for each layer in VGG-16,
calculated by Formulas (1) and (2). l = 64 is located between the layers of Stack3 and Stack4. Therefore,
as shown in Table 3, four candidate networks named A, B, C, and D were designed, which include
layers deep to Stack3 or Stack4. Network A is an intercept structure of VGG-16 from Stack1 to Stack3,
and network B is an intercept structure of VGG-16 from Stack1 to Stack4. Network C and network D
use the same structure as network A and network B, respectively, but the number of weight layers in
Stack1 is reduced to one. This reduction means that more fine-grained features are obtained by the
first pooling layer, thereby improving the ability of the entire network to extract detailed features [41].
The convolution layers (with different depths in different configurations) are followed by three FCs.

Table 2. Values of the feature map (FM) and receptive field (RF) in each layer of VGG-16.

Stack Layer FM RF Stride Stack Layer FM RF Stride

1
Conv3-64 224 3 1 Pool3 28 44 8

Conv3-64 224 5 1
4

Conv3-512 28 60 8

Pool1 112 6 2 Conv3-512 28 76 8

2
Conv3-128 112 10 2 Conv3-512 28 92 8

Conv3-128 112 14 2 Pool4 14 100 16

Pool2 56 16 4
5

Conv3-512 14 132 16

3
Conv3-256 56 24 4 Conv3-512 14 164 16

Conv3-256 56 32 4 Conv3-512 14 196 16

Conv3-256 56 40 4 Pool5 7 212 32

Table 3. Network structures of the four networks.

Stack A B C D

10 weight layers 13 weight layers 9 weight layers 12 weight layers

Input (64 × 64 SAR image)

1 conv3-64
conv3-64

conv3-64
conv3-64 conv3-64 conv3-64

maxpool/2

2 conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool/2

3
conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256

maxpool/2

4 /
conv3-512
conv3-512
conv3-512

/
conv3-512
conv3-512
conv3-512

/ maxpool/2 / maxpool/2

FC-1024
FC-1024

FC-2
Softmax
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Similar to VGG, both the first and second FC have the same channel number, 1024; the third FC
contains only two nodes for the classes of oil spill and lookalike. The configuration of the FCs is the
same in networks A, B, C, and D. All of the pooling layers (Pool1, Pool2, and Pool3) in the network
use the maximum pooling process, and the Rectified Linear Unit (ReLU) [29] is set as the activation
function. The loss curves of the test data set obtained by training the four networks are shown in
Figure 5. The losses of C and D converge significantly faster and reach lower values than those of A and
B. Both the losses of C and D tend to have the same value, but C converges faster than D. According to
Table 3, the structure of network C is simpler than that of D, which indicates that there is still structural
redundancy in network D. Therefore, network C is the one which is most suitable for the oil spill
detection data set among the four candidate networks.
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4.2. Node Number of FC and Dropout

The number of nodes in one FC layer and dropout rate [42] jointly determine the number of nodes
that are actually effective during training in that layer. Therefore, they should be considered together.

The number of nodes in the first FC layer of OSCNet is equivalent to the number of input features
in a traditional ANN. According to the experience of AAMLP [14], that network achieved satisfactory
classification results when using 77 features. This experience provides a clue for finding suitable
values for the node number and dropout rate. In this section, we explore the effect of varying the
hyperparameter. The comparison was conducted in two situations.

Firstly, the dropout rate was set to a common value of 0.5 [29], and the network was then
trained four times with four different numbers of FC: 1024, 512, 256, and 128. The training accuracy
corresponding to the four FC node numbers is shown in Table 4. The experimental results show that
the classification accuracy is relatively high when the number of remaining nodes of FC is 64 or 128,
which is close to the empirical value of 77.

Table 4. Accuracy of the training data set from four different models.

FC Node Num Reserved Node Num Training Accuracy (%)

1024 512 93.95
512 256 94.75
256 128 97.08
128 64 96.88

Then, such combinations of FC node number and dropout rate (see Table 5) where the reserved
node numbers of FC were between 64 and 128 were adopted to train the network. The results show (see
Figure 6) that combination D has the fastest convergence speed. It is not difficult to see from Figure 6
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that excessive dropouts make network training more difficult, and it is easier to obtain better results by
moderate dropout. In subsequent tuning experiments for other hyperparameters, the network was
initialized with combination D, i.e., the FC node number of 128 and dropout rate of 0.1.

Table 5. Variable combination of the channel number and dropout rate.

Model FC Channel Num Dropout Rate Reserved Num

A 512 0.8 102
B 256 0.6 102
C 256 0.5 128
D 128 0.1 115
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4.3. Hyperparameter Evaluation

Common activation functions include Sigmoid, tanh, ReLU, and the variants of ReLU, such as
Leaky ReLU and ReLU6 [43]. ReLU can avoid the problems of gradient disappearance or gradient
explosion, which often happens when Sigmoid or tanh is used in deep networks [29]. Since ReLU
has been widely used in AlexNet, VGG, and other networks, and has been proven to have a good
universal adaptability [29,31], we only examined the sensitivity of ReLU and its variants using our data
set. As shown in Figure 7a, Leaky ReLU and ReLU fit almost equally. However, compared to ReLU,
when adding negative nodes to the operation, Leaky ReLU causes the network to have a greater time
and space complexity, which leads to slower convergence. Therefore, we chose ReLU as the activation
function. This is different from the case where Leaky ReLU is often better than ReLU in the classification
problem of RGB images.

The scale of our training set was in the order of 105-106, so the training optimization algorithm
used Stochastic Gradient Descent (SGD) [44]. Increasing the momentum in SGD (Momentum) can
improve the efficiency of gradient descent and avoid position vibration near the minimum value of the
gradient [45]. This is a popular method that has been adopted by AlexNet, VGG, and other classical
CNNs. Meanwhile, Kingma et al. [46] pointed out that their adaptive moment estimation (Adam) had a
better performance than Momentum. Based on SGD, the Momentum and Adam algorithms were used
for multiple training. As shown in Figure 7b, Adam is better than Momentum for the SAR dark patch
data set.

According to the method used to determine the initial learning rate proposed by Nielsen [47], the
search direction for the optimal initial learning rate can be determined to be downward by training at
the initial rates of 0.001, 0.01, and 0.1. Therefore, many smaller initial learning rates were subsequently
checked. Their corresponding learning curves are shown in Figure 7c,d. According to Figure 7c,d, the
initial learning rate of 5.0 × 10−5 is best for OSCNet.
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Bengio et al. [48] believed that the batch size could range from one to several hundred, and
values over 10 could make full use of the acceleration advantage of matrix–matrix products over
matrix–vector products, thereby improving the training efficiency. Considering the hardware conditions,
a comparative experiment was performed with a batch size that was increased from 16 to 512 by
iterative multiples of 2, shown in Figure 7e,f. Considering the consumption of computing time, 256
was selected as the batch size for training.
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Figure 7. Some curves of adjustment results in hyperparameter evaluation: (a) Different kinds of
activation functions influence the decrease of loss value; (b) the two optimization algorithms achieve
distinct accuracy trends; (c) the influence of the initial learning rate on the downtrend of loss; (d) loss
values of the 50th Epoch in (c); (e) the influence of the batch size on the downtrend of loss; (f) loss
values of the 50th Epoch in (e); (g) the influence of different initialization methods on training.

The initialization of weights and biases (parameter initialization) has a significant impact on
whether the network can converge, the speed of convergence, and whether it is easy to fall into a local
minimum. Glorot et al. [49] designed an initialization method, known as Xavier Initialization, to ensure
that the output variance of each layer is equal. In 2015, considering the influence of the non-linear
effect of the ReLU series activation functions on the distribution of output data, He et al. [43] proposed
an initialization method that can more likely guarantee the consistency of input and output variances
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of the network. The comparison experiment was conducted by training our network with the two
initialization methods. The comparison result in Figure 7g shows that He initialization is better than
Xavier initialization for OSCNet.

5. Experimental Results and Analysis

After completing all of the above experiments, the structure of OSCNet (see Figure 8) and the
hyperparameters of the network (see Table 6) were finally determined. In order to verify the fitting and
generalization capabilities of OSCNet, we preprocessed the data set 15 times, completed 15 training
experiments on different training data sets, and obtained their test results, respectively.
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Table 6. Attributes and hyperparameters of OSCNet.

Type Activation
Function

Loss
Function

Dropout
Rate

Learning
Rate

Batch
Size

Parameter
Initialization

Method/Value ReLU Softmax
Cross Entropy 0.1 5 × 10−5 256 He

Initialization

5.1. Evaluation Metrics

Before validating 15 models, we needed to clarify the models’ validation criteria, that is, the
performance indicators of common classifiers, as the validation indicators of OSCNet. These indicators
include the recognition rate (accuracy), detection rate (recall), precision, F-measure, receiver operating
characteristic (ROC) curve, and area under the curve (AUC). The confusion matrix of the detection
results is shown in Table 7. The four values in the confusion matrix are true positives (TPs), true
negatives (TNs), false positives (FPs), and false negatives (FNs).

Table 7. Confusion Matrix.

Label

Oil spills Lookalikes

Classification
Oil spills TP FP

Lookalikes FN TN
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The indicators can be defined as follows:

Recognition Rate (Accuracy) =
TP + TN

TP + TN + FP + FN
, (3)

Detection Rate (Recall) =
TP

TP + FN
, (4)

Precision =
TP

TP + FP
, (5)

F−measure =
2 ∗ TP

2 ∗ TP + FN + FP
. (6)

5.2. Results

The results of the 15 training set are shown in Table 8. The highest recognition rate (accuracy) is
95.46%, the highest detection rate (recall) is 85.17%, the best precision is 87.30%, and the best F-measure
is 85.55%. The corresponding averaged values are 94.01%, 83.51%, 85.70%, and 84.59%, respectively.

Table 8. Classification indicators.

Training Times Recognition Rate Detection Rate Precision F-Measure

1 93.41 82.33 84.34 83.32
2 93.77 83.50 85.07 84.28
3 93.94 82.31 86.68 84.45
4 94.14 84.92 85.67 85.29
5 94.11 82.57 87.30 84.87
6 93.91 83.45 85.71 84.56
7 94.03 83.85 85.85 84.83
8 93.86 83.41 85.53 84.45
9 94.25 85.17 85.95 85.55
10 94.07 83.76 86.22 84.96
11 94.11 84.72 86.36 85.53
12 95.46 83.74 86.05 84.88
13 93.57 83.11 84.51 83.80
14 93.28 82.95 83.37 83.16
15 94.12 82.84 87.07 84.91

AVG 94.01 83.51 85.70 84.59

By averaging the 15 results of validation, the ROC curve and the corresponding AUC were
produced and are shown in Figure 9. The ROC curve is very close to the X- and Y-axes, and the value of
AUC is 0.968, which is significantly higher than 0.868—the value of AAMLP obtained in [14]. Therefore,
we may say that OSCNet is better than AAMLP.
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It is also important to investigate whether the performance of models is stable for the different
training sets since, every time, the training set was randomly generated from the original data set. We
plotted the changes in the values of loss based on the test data set: 3rd Training Model (a randomly
selected training set), 9th Training Model (the detection rate is the largest), and 12th Training Model
(the recognition rate is the largest). The curves are shown in Figure 10. Except for some slight random
oscillations, the three curves almost coincide. This shows that the network is quite stable.
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5.3. Comparison Based on the Same Data Set

The classification performances of OSCNet, VGG-16, and AAMLP obtained based on the same
data set are listed in Table 9. Although OSCNet is a variant of VGG-16, it displays a better performance
than that of VGG-16 by transfer learning. Compared with AAMLP, all classification performance
indicators of OSCNet are improved to some degree.

Table 9. Performance comparison of different classifiers.

Classifiers OSCNet VGG-16 AAMLP

Recognition rate (accuracy) 94.01 90.35 92.50
Detection rate (recall) 83.51 77.63 81.40

Precision 85.70 75.01 80.95
F-measure 84.59 76.30 81.28

We selected three typical SAR images containing oil spills to intuitively show improvement of the
classification results of AAMLP by OSCNet. In the following analysis, oil spills and lookalikes are
labeled 1 and 0, respectively.

The first SAR image was Envisat ASAR, acquired in the northwestern region of the Bohai Sea,
China, on February 15, 2004, at 02:23:03 UTC. The variability of the image intensity with the angle
of incidence was corrected. Oil spills detected by AAMLP and OSCNet are marked with boxes in
Figure 11a,b, respectively. The arc-shaped dark stripes ranked from left to right on the left side of the
image are the atmospheric internal waves. One of them was misclassified as an oil spill by AAMLP
(see the magenta box in Figure 11a), but correctly judged as a lookalike by OSCNet. It is worth noting
that there were multiple dark patches in the atmospheric internal waves, but only one of them was
misclassified as an oil spill by AAMLP, which indicates that the feature vector of the atmospheric
internal waves is close to the decision surface of AAMLP. Table 10 shows the classification results and
accuracy of OSCNet.
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Number 01 02 03 04 05 06 07 08
Classification 0 1 1 1 1 1 1 1

Accuracy 0.7461 0.9978 ~1.0 0.9994 0.9509 0.9988 0.9987 0.9169

The second SAR image was Envisat ASAR, acquired offshore Shanghai in the East China Sea on
November 5, 2003, at 13:42:17 UTC. The oil spills detected by AAMLP and OSCNet are marked with
boxes in Figure 12a,b, respectively. AAMLP reported one false alarm and missed one oil spill. The
false alarm was a shoal in the estuary of Yangtze River, which appeared as a black ring on the SAR
image (see number 01 in Table 11). The missed dark patch was an oil spill with a small contrast to the
ocean background (see number 02 in Table 11). Both dark patches were correctly classified by OSCNet,
and their confidence was greater than 0.8.
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Figure 12. Typical SAR image containing oil spills: (a) Oil spills classified by AAMLP. The dark patch
marked with a magenta box is a false alarm due to shoal; (b) oil spills classified by OSCNet. The false
alarm of (a) has disappeared and the dark patch marked with an orange box is missed by AAMLP, but
correctly classified by OSCNet.
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Table 11. The dark patches misclassified by AAMLP, but correctly classified by OSCNet.
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distinguish these dark patches based only on the information extracted from SAR images. This is 
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number of samples, or import additional information into the classifier. This information may 
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Number 01 02
Classification 0 1

Accuracy 0.8109 0.8098

The third SAR image was acquired by COSMO-SkyMed in the east of Bohai Sea, China, on August
24, 2011, at 10:33:31 UTC. Figure 13a,b shows the respective detection results of AAMLP and OSCNet.
The complex dark pattern shown on the left of the SAR image is the typical feature of a low wind
speed zone in an SAR image. There were two false alarms reported by AAMLP in the low wind speed
zone, while both of them were correctly classified by OSCNet with a confidence value greater than 99%
(see numbers 04 and 05 in Table 12).

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 

 

Sample 
  

Number 01 02 
Classification 0 1 

Accuracy 0.8109 0.8098 

The third SAR image was acquired by COSMO-SkyMed in the east of Bohai Sea, China, on 
August 24, 2011, at 10:33:31 UTC. Figure 13(a)(b) shows the respective detection results of AAMLP 
and OSCNet. The complex dark pattern shown on the left of the SAR image is the typical feature of 
a low wind speed zone in an SAR image. There were two false alarms reported by AAMLP in the 
low wind speed zone, while both of them were correctly classified by OSCNet with a confidence 
value greater than 99% (see numbers 04 and 05 in Table 12). 

 

(a) (b) 

Figure 13. Typical SAR image containing oil spills: (a) Oil spills classified by AAMLP. The dark 
patches marked with magenta boxes are false alarms in a low wind speed zone; (b) oil spills 
classified by OSCNet. The false alarms in (a) have disappeared. 

Table 12. Some dark patches correctly classified by OSCNet. 

Sample      

Number 01 02 03 04 05 
Classification 1 1 1 0 0 

Accuracy 0.9985 0.8705 0.9834 0.9999 0.9964 

Although OSCNet achieved a better classification performance than AAMLP, there were still 
some misclassified cases, as shown in Table 13. In such cases, the classification confidence of 
OSCNet was usually relatively low. It must be acknowledged that there was still considerable 
uncertainty in the separation of dark patches by OSCNet. In fact, there was a mixed zone in the 
feature space for oil spills and lookalikes. For example, the SAR image features of biological oil 
films were very similar to those of oil spills. Without other auxiliary information, such as the 
environmental information and near synchronous optical remote sensing images, even experts 
cannot make a clear judgment on the samples in the mixed zone of a feature space. Even if the 
manual labels based on the auxiliary information are accurate, it is still difficult for the classifier to 
distinguish these dark patches based only on the information extracted from SAR images. This is 
the root cause of difficulties of SAR oil spill detection. In order to improve the classification 
performance further, it is necessary to improve the accuracy of the labels and to increase the 
number of samples, or import additional information into the classifier. This information may 

  

Figure 13. Typical SAR image containing oil spills: (a) Oil spills classified by AAMLP. The dark patches
marked with magenta boxes are false alarms in a low wind speed zone; (b) oil spills classified by
OSCNet. The false alarms in (a) have disappeared.

Table 12. Some dark patches correctly classified by OSCNet.

Sample

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 

 

Sample 
  

Number 01 02 
Classification 0 1 

Accuracy 0.8109 0.8098 

The third SAR image was acquired by COSMO-SkyMed in the east of Bohai Sea, China, on 
August 24, 2011, at 10:33:31 UTC. Figure 13(a)(b) shows the respective detection results of AAMLP 
and OSCNet. The complex dark pattern shown on the left of the SAR image is the typical feature of 
a low wind speed zone in an SAR image. There were two false alarms reported by AAMLP in the 
low wind speed zone, while both of them were correctly classified by OSCNet with a confidence 
value greater than 99% (see numbers 04 and 05 in Table 12). 

 

(a) (b) 

Figure 13. Typical SAR image containing oil spills: (a) Oil spills classified by AAMLP. The dark 
patches marked with magenta boxes are false alarms in a low wind speed zone; (b) oil spills 
classified by OSCNet. The false alarms in (a) have disappeared. 

Table 12. Some dark patches correctly classified by OSCNet. 

Sample      

Number 01 02 03 04 05 
Classification 1 1 1 0 0 

Accuracy 0.9985 0.8705 0.9834 0.9999 0.9964 

Although OSCNet achieved a better classification performance than AAMLP, there were still 
some misclassified cases, as shown in Table 13. In such cases, the classification confidence of 
OSCNet was usually relatively low. It must be acknowledged that there was still considerable 
uncertainty in the separation of dark patches by OSCNet. In fact, there was a mixed zone in the 
feature space for oil spills and lookalikes. For example, the SAR image features of biological oil 
films were very similar to those of oil spills. Without other auxiliary information, such as the 
environmental information and near synchronous optical remote sensing images, even experts 
cannot make a clear judgment on the samples in the mixed zone of a feature space. Even if the 
manual labels based on the auxiliary information are accurate, it is still difficult for the classifier to 
distinguish these dark patches based only on the information extracted from SAR images. This is 
the root cause of difficulties of SAR oil spill detection. In order to improve the classification 
performance further, it is necessary to improve the accuracy of the labels and to increase the 
number of samples, or import additional information into the classifier. This information may 

  

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 

 

Sample 
  

Number 01 02 
Classification 0 1 

Accuracy 0.8109 0.8098 

The third SAR image was acquired by COSMO-SkyMed in the east of Bohai Sea, China, on 
August 24, 2011, at 10:33:31 UTC. Figure 13(a)(b) shows the respective detection results of AAMLP 
and OSCNet. The complex dark pattern shown on the left of the SAR image is the typical feature of 
a low wind speed zone in an SAR image. There were two false alarms reported by AAMLP in the 
low wind speed zone, while both of them were correctly classified by OSCNet with a confidence 
value greater than 99% (see numbers 04 and 05 in Table 12). 

 

(a) (b) 

Figure 13. Typical SAR image containing oil spills: (a) Oil spills classified by AAMLP. The dark 
patches marked with magenta boxes are false alarms in a low wind speed zone; (b) oil spills 
classified by OSCNet. The false alarms in (a) have disappeared. 

Table 12. Some dark patches correctly classified by OSCNet. 

Sample      

Number 01 02 03 04 05 
Classification 1 1 1 0 0 

Accuracy 0.9985 0.8705 0.9834 0.9999 0.9964 

Although OSCNet achieved a better classification performance than AAMLP, there were still 
some misclassified cases, as shown in Table 13. In such cases, the classification confidence of 
OSCNet was usually relatively low. It must be acknowledged that there was still considerable 
uncertainty in the separation of dark patches by OSCNet. In fact, there was a mixed zone in the 
feature space for oil spills and lookalikes. For example, the SAR image features of biological oil 
films were very similar to those of oil spills. Without other auxiliary information, such as the 
environmental information and near synchronous optical remote sensing images, even experts 
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Although OSCNet achieved a better classification performance than AAMLP, there were still
some misclassified cases, as shown in Table 13. In such cases, the classification confidence of OSCNet
was usually relatively low. It must be acknowledged that there was still considerable uncertainty in
the separation of dark patches by OSCNet. In fact, there was a mixed zone in the feature space for oil
spills and lookalikes. For example, the SAR image features of biological oil films were very similar
to those of oil spills. Without other auxiliary information, such as the environmental information
and near synchronous optical remote sensing images, even experts cannot make a clear judgment on
the samples in the mixed zone of a feature space. Even if the manual labels based on the auxiliary
information are accurate, it is still difficult for the classifier to distinguish these dark patches based
only on the information extracted from SAR images. This is the root cause of difficulties of SAR oil
spill detection. In order to improve the classification performance further, it is necessary to improve
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the accuracy of the labels and to increase the number of samples, or import additional information
into the classifier. This information may include a wider range of images around the dark patch, a
synchronous wind field, or synchronous optical remote sensing images.

Table 13. Examples of lookalikes hard to classify.

Sample
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ML networks. This is supported by the following analysis. 
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5.4. The Role of Data Augmentation

We previously used data augmentation to increase the size of the training set. Once the network
architecture and hyperparameters of OSCNet had been fixed, we had a chance to verify the role of data
augmentation in network training through experiments. The red and black curves in Figure 14 are the
loss curves when training with and without data augmentation, respectively.
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According to Figure 14, the loss curve of training with data augmentation converges to a lower
value than that without data augmentation. At the beginning of training, the descent speed of the
black curve is significantly higher than the descent speed of the red curve, but the descent stops at
0.24 and starts to oscillate upward after 120 Epoch. This shows that the network trained without data
augmentation finally becomes over-fitted. This phenomenon has been explained and discussed by
many researchers [29–31,33]. Therefore, it is necessary to train with data augmentation, which can
effectively avoid over-fitting and improve the classification accuracy.

5.5. Comparison of Auto-Extracted Features and Hand-Crafted Features

A DCNN can be divided into a convolutional part and an FC part. The FC part is equivalent to
a traditional neural network, and the convolutional part is responsible for automatically extracting
features from the training sample set. Since the feature set used by the DCNN is what is learned by the
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convolutional network part from the training sample set, it is more in line with the characteristics of
the data than the hand-crafted feature set which is adopted in traditional ML networks, and thus the
DCNN is able, in principal, to obtain a better classification performance than that of traditional ML
networks. This is supported by the following analysis.

The number of nodes in the first layer of OSCNet’s FCs is 128, which indicates that there are 128
features automatically extracted by the convolutional part of the network. AAMLP has 77 artificially-
defined features, which are collected from a large number of papers or books related to automatic SAR
oil spill detection or image pattern recognition. For each feature, the mean µ and standard deviation σ
can be calculated for the oil spills and the lookalikes, respectively. The Fisher’s Discriminant Ratio
(FDR) [50] for each feature can then be calculated using Formula (7), which describes the capability of
a single feature to distinguish the two classes of oil spill and lookalike.

FDR =
(µ1 − µ2)

2

σ2
1 + σ

2
2

(7)

The larger the FDR value is, the higher the capability of discrimination is [50].
Figure 15 shows the FDRs for all features used by OSCNet and AAMLP. The blue part on the left

is OSCNet and the red part on the right is AAMLP. Since we did not care about the physical meaning
of the features, they just needed to be numbered. The abscissa in the figure is the feature number, and
the features are arranged in descending order of FDR for OSCNet and AAMLP, respectively.
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In addition, the correlation coefficients were calculated for all the features in the same feature
set in pairs, and the features with a correlation coefficient greater than 95% were regarded as similar
features. In this way, one feature set could be divided into many similar feature groups. Only the
feature with the highest FDR was retained in each group and the other similar features were deleted,
so many gaps are left in Figure 15. We considered these retained features as valid features.

It can be seen from Figure 15 that the overall FDR values of the features of OSCNet are significantly
higher than those of AAMLP. The number of valid features with FDR > 1 in OSCNet is 54, while the
number in AAMLP is only 17. Therefore, the distinguishability of the features automatically learned by
OSCNet is significantly higher than the hand-crafted features used in AAMLP, which is an important
reason for the higher classification performance of OSCNet than AAMLP.
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5.6. Comparison with Other DL Classifiers

In this section, the comparison of OSCNet with several DL classifiers for SAR oil spill detection,
including GCNN [24], TSCNN [25], and RED-Net [26], will be presented in terms of the network depth,
data set size, data source, and classification performance indicators. Since OSCNet works at the dark
patch level, but TSCNN and REDNet work at the pixel level, we also calculated a set of pixel-based
classification performance indicators for OSCNet (see Table 14). The formulas employed for generating
the classification performance indicators are the same as the formulas (3)-(6), except for the fact that
the values of the confusion matrix are pixel numbers instead of dark patch numbers. The indicators
calculated by the pixel number are usually different from those calculated by the dark patch number
because dark patch sizes in the data set are variable.

Table 14. Pixel-level classification performance indicators of OSCNet.

Training Times Accuracy (%) Recall (%) Precision (%) F-Measure(%)

1 90.23 85.96 64.54 73.72
2 94.39 84.91 76.75 80.63
3 96.35 88.99 88.69 88.83
4 95.85 79.70 82.59 81.12
5 96.70 89.19 77.57 82.97
6 93.29 77.35 90.07 83.23
7 94.12 76.86 79.01 77.92
8 94.04 69.80 85.62 76.90
9 95.90 84.59 96.39 90.11
10 96.67 86.94 95.49 91.01
11 96.64 89.08 88.47 88.78
12 95.87 91.58 88.03 89.77
13 96.90 93.36 86.90 90.02
14 92.91 67.38 78.35 72.45
15 96.60 96.71 80.98 88.15

AVG 95.09 84.30 84.12 84.21

Using the averaged (AVG) value, we compared OSCNet with TSCNN and REDNet based on
pixel-based classification performance indicators (see Table 15).

Table 15. Comparison of OSCNet and existing related work.

Classifiers OSCNet GCNN TSCNN RED-Net

Depth of layers 12 5 6 6
Data set size 23,768 5400 - -

With augmentation Yes No Yes Yes
Raw SAR images 336 5 23 38

Oil spills 4843 1800 14 22

Data sources
(Satellite/SAR band)

Envisat/C
ERS-1,2/C

COSMO Sky-Med/X
Radarsat-2/C SLAR SLAR

By dark patches
Recognition rate 94.01 91.33 - -

Detection rate 83.51 - - -
False alarm rate 3.42 - - -

By pixels

Accuracy 95.09 - 97.82 -
Precision 84.12 - 52.23 93.12

Recall 84.29 - 72.70 92.92
F-measure 84.21 - 53.62 93.01

A remarkable feature in Table 15 is that the numbers of samples, SAR images, and SAR data
sources used by OSCNet are much larger than those of other works. To some degree, the size of the
data set determines the validity of statistic characteristics and whether the source of the data set is
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widespread may affect the generalization of the network for various types of data. Both TSCNN and
RED-Net use smaller data sets and contain only one data source. The data source of GCNN is also
singular. In this sense, the indicators given by OSCNet should have a relatively strong generalization
ability in the problem domain of spaceborne SAR oil spill detection.

Another remarkable feature in Table 15 is that OSCNet is much deeper than the other networks.
This is mainly due to the larger size of our data set and data augmentation. According to the study of
Lei et al. [33], the minimum data set size required when the network is close to optimal is related to the
number of weights of the network. Their experiments showed that a network with 1.14 × 106 weights
needs the size of the training data set to be at least about 4 × 104. Following the proportion, the size of
the data set required by OSCNet might be greater than 9.5 × 104. After data augmentation, the training
set size of OSCNet expanded to 1.6 × 105, which meets the above requirements.

Concerning the classification performance indicators, because the data sets of OSCNet and the
other three classifiers are very different, it makes almost no sense to compare them directly. The
indicators can only be references of the classifiers in their own problem domains. In spite of the
different problem domains, the most outstanding performance is achieved by RED-Net, followed
by OSCNet. RED-Net’s precision, recall, and F-measure are all much higher than those of OSCNet.
However, we notice that the input size of the RED-Net is determined by its data set through the grid
search algorithm, while the size of the dark patches in our data set varies in an extremely wide range.
As mentioned in Section 2.2, the size of an oil spill dark patch can be as large as 2136. Therefore, it
is doubtful whether similar excellent indicators can be achieved by RED-Net based on our data set
with such a wide ranging dark patch size, even if a new input size is determined by the grid search
method. Nevertheless, this method based on image segmentation to solve oil spill detection in one
step is worth learning from. Considering the heavy workload, we will carry out related experiments in
future research.

6. Conclusions and Outlooks

Based on VGG-16, a relatively deep DCNN named OSCNet was built in this study for the
classification of SAR dark patches. OSCNet contains as many as 12 weight layers, which benefits from
the use of the data augmentation technique for the big data set composed of 23,768 SAR dark patches
extracted from 336 SAR images. The distinguishability of the features learned from the data set by
OSCNet is much better than that of hand-craft features. Therefore, the classification performance of
OSCNet is significantly improved compared to AAMLP—a traditional sophisticated ML classifier. The
accuracy, recall, and precision were increased from 92.50%, 81.40%, and 80.95% to 94.01%, 83.51% and
85.70%, respectively. The classification performance of OSCNet might be better than that of the other
two CNN-type networks [24,25], which are currently available for SAR oil spill detection, but probably
not as good as RED-Net [26]—a pixel-level DL classifier.

Our research shows that the size and statistic characteristic of the data set play a crucial role in the
establishment of a DCNN classifier for SAR oil spill detection. In order to build an automatic operational
SAR oil spill monitoring system, continuously expanding the data set should be a long-standing task.

For a system based on the three-step processing framework, the procedure used to automatically
extract dark patches from SAR images must always be consistent, because the statistical characteristics
of the dark patch data set are also affected by the image segmentation program. This effect is mainly
reflected in the proportion of lookalikes. The dark patches in this research were all extracted by the
same image segmentation program and thus meet the above requirements.

The pixel-level classifier can be used as an image segmentation algorithm in a three-step processing
framework if its recall is 100%, at the expense of precision. However, if acceptable values can be obtained
for both recall and precision simultaneously, the pixel-level classifier can exist as an independent SAR
oil spill detector other than a classifier in the three-step processing framework. At this point, it will
pose an important challenge to the three-step processing framework. In future research, we will pay
more attention to the pixel-level DL classification algorithms and compare them with dark patch-level
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DL algorithms based on the same big data set so as to find the better algorithms among them for SAR
oil spill detection.
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