An Experimental Study on Trajectory Tracking Control of Torpedo-like AUVs Using Coupled Error Dynamics
Abstract
:1. Introduction
2. Controller Design for the AUV
2.1. AUV Systems and Motion-Governing Equations
2.2. Desired Trajectory
2.3. Dynamics of Tracking Error
2.4. Controller Design Using the Coupled Error Dynamics and Time Delay Estimation
2.5. Error Dynamics of the Proposed Controller
3. Practical Issues for the Experiments
3.1. Handling the Noise Effect in the TDE
3.2. Handling Nonlinearity and the Limits of the Actuators
4. Experimental Study
4.1. Experimental Verification of the Noise-Handling Issue
4.2. Experimental Verification of Tracking Performance in 3D Space Motion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUV | Autonomous underwater vehicle |
BC | Back-stepping control |
BCTDE | Back-stepping control with time delay estimation |
TDE | Time delay estimation |
DOF | Degree of freedom |
IMU | Inertial measurement unit |
DVL | Doppler velocity log |
GNSS | Global navigation satellite system |
RMS | Root mean square |
References
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Cho, G.R.; Li, J.H.; Park, D.; Jung, J.H. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control and time delay estimation. Ocean Eng. 2020, 201, 107131. [Google Scholar] [CrossRef]
- Li, J.H.; Lee, P.M. Path tracking in dive plane for a class of torpedo-type underactuated AUVs. In Proceedings of the 7th Asian Control Conference, ASCC 2009, Hong Kong, China, 27–29 August 2009; pp. 360–365. [Google Scholar]
- Repoulias, F.; Papadopoulos, E. Planar trajectory planning and tracking control design for underactuated AUVs. Ocean Eng. 2007, 34, 1650–1667. [Google Scholar] [CrossRef]
- Liang, X.; Qu, X.; Hou, Y.; Zhang, J. Three-dimensional path following control of underactuated autonomous underwater vehicle based on damping backstepping. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417724179. [Google Scholar] [CrossRef] [Green Version]
- Juan, L.; Zhang, Q.; Cheng, X.; Mohammed, N.F. Path following backstepping control of underactuated unmanned underwater vehicle. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 2267–2272. [Google Scholar]
- Cho, G.R.; Park, D.G.; Kang, H.; Lee, M.J.; Li, J.H. Horizontal Trajectory Tracking of Underactuated AUV using Backstepping Approach. IFAC-PapersOnLine 2019, 52, 174–179. [Google Scholar] [CrossRef]
- Cho, G.R.; Kang, H.; Lee, M.J.; Kim, M.G.; Li, J.H. 3D Space Trajectory Tracking of Underactuated AUVs using Back-Stepping Control and Time Delay Estimation. IFAC-PapersOnLine 2021, 54, 238–244. [Google Scholar] [CrossRef]
- Elmokadem, T.; Zribi, M.; Youcef-Toumi, K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles. Ocean Eng. 2017, 129, 613–625. [Google Scholar] [CrossRef]
- Yu, C.; Xiang, X.; Lapierre, L.; Zhang, Q. Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle. Ocean Eng. 2017, 146, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Karkoub, M.; Wu, H.M.; Hwang, C.L. Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng. 2017, 145, 188–198. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Hua, C.; Guan, X. Trajectory Tracking Control of Autonomous Underwater Vehicle with Unknown Parameters and External Disturbances. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 1054–1063. [Google Scholar] [CrossRef]
- Elmokadem, T.; Zribi, M.; Youcef-Toumi, K. Control for dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles using sliding mode control. J. Intell. Robot. Syst. 2019, 95, 1113–1132. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, M.; Xu, J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics. Ocean Eng. 2019, 173, 802–809. [Google Scholar] [CrossRef]
- Tabataba’i-Nasab, F.S.; Keymasi Khalaji, A.; Moosavian, S.A.A. Adaptive nonlinear control of an autonomous underwater vehicle. Trans. Inst. Meas. Control 2019, 41, 3121–3131. [Google Scholar] [CrossRef]
- Li, J.; Du, J.; Sun, Y.; Lewis, F.L. Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance. Int. J. Robust Nonlinear Control 2019, 29, 4629–4643. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Three-Dimensional Path Following of an Underactuated AUV Based on Neuro-Adaptive Command Filtered Backstepping Control. IEEE Access 2018, 6, 74355–74365. [Google Scholar] [CrossRef]
- Li, J.H.; Lee, M.J.; Kang, H.; Kim, M.G.; Cho, G.R. Neural-net based robust adaptive control for 3D path following of torpedo-type AUVs. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Republic of Korea, 14–18 December 2020; pp. 5261–5266. [Google Scholar]
- Jun, B.H.; Park, J.Y.; Lee, F.Y.; Lee, P.M.; Lee, C.M.; Kim, K.; Lim, Y.K.; Oh, J.H. Development of the AUV ‘ISiMI’and a free running test in an Ocean Engineering Basin. Ocean Eng. 2009, 36, 2–14. [Google Scholar] [CrossRef]
- Rout, R.; Subudhi, B. NARMAX self-tuning controller for line-of-sight-based waypoint tracking for an autonomous underwater vehicle. IEEE Trans. Control Syst. Technol. 2016, 25, 1529–1536. [Google Scholar] [CrossRef]
- Refsnes, J.E.; Sorensen, A.J.; Pettersen, K.Y. Model-based output feedback control of slender-body underactuated AUVs: Theory and experiments. IEEE Trans. Control Syst. Technol. 2008, 16, 930–946. [Google Scholar] [CrossRef]
- Healey, A.J.; Lienard, D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 1993, 18, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Park, D.; Li, J.H.; Ki, H.; Kang, H.; Kim, M.G.; Suh, J.H. Selective AUV guidance scheme for structured environment navigation. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–5. [Google Scholar]
- González-García, J.; Gómez-Espinosa, A.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Cuan-Urquizo, E.; Escobedo Cabello, J.A. Experimental Validation of a Model-Free High-Order Sliding Mode Controller with Finite-Time Convergence for Trajectory Tracking of Autonomous Underwater Vehicles. Sensors 2022, 22, 488. [Google Scholar] [CrossRef]
- Dai, X.; Xu, H.; Ma, H.; Ding, J.; Lai, Q. Dual closed loop AUV trajectory tracking control based on finite time and state observer. Math. Biosci. Eng. 2022, 19, 11086–11113. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, I.L.G.; Pettersen, K.Y.; Gravdahl, J.T. Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results. Ocean Eng. 2021, 222, 108480. [Google Scholar] [CrossRef]
- Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Trajectory tracking for autonomous underwater vehicle: An adaptive approach. Ocean Eng. 2019, 172, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Joe, H.; Yu, S.c.; Lee, J.S.; Kim, M. Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Ind. Electron. 2015, 63, 1052–1061. [Google Scholar] [CrossRef]
- Cho, G.R.; Chang, P.H.; Park, S.H.; Jin, M. Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Trans. Control Syst. Technol. 2009, 17, 1406–1414. [Google Scholar]
- Cho, G.R.; Park, D.G.; Li, J.H.; Kang, H.; Kim, M.G. Path Tracking Control of AUV using Nonholonomic Error Dynamics. In Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS 2018), PyeongChang, Republic of Korea, 17–20 October 2018; pp. 271–275. [Google Scholar]
- Hanwha Systems. Unmanned Maritime System. Available online: https://www.hanwhasystems.com/en/business/defense/naval/marine_index.do (accessed on 21 June 2023).
- Kang, H.; Cho, G.R.; Kim, M.G.; Lee, M.J.; Li, J.H.; Kim, H.S.; Lee, H.; Lee, G. Mission Management Technique for Multi-sensor-based AUV Docking. J. Ocean Eng. Technol. 2022, 36, 181–193. [Google Scholar] [CrossRef]
- Lee, G.; Lee, P.Y.; Kim, H.S.; Lee, H.; Lee, J. Learning-based Localization of AUV with Outlier Sensor Data. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021; pp. 2257–2260. [Google Scholar]
- Kim, G.; Lee, J.; Lee, P.; Kim, H.; Lee, H. A study on docking guidance navigation algorithm of AUV by combining inertial navigation sensor and docking guidance sensor. J. Inst. Control. Robot. Syst. 2019, 25, 647–656. [Google Scholar] [CrossRef]
- Choi, K.; Lee, G.; Lee, P.Y.; Kim, H.S.; Lee, H.; Kang, H.; Lee, J. Localization algorithm of multiple-AUVs utilizing relative 3D observations. J. Korea Robot. Soc. 2022, 17, 110–117. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wei, Y.; Zhang, C. On the fuzzy-adaptive command filtered backstepping control of an underactuated autonomous underwater vehicle in the three-dimensional space. J. Mech. Sci. Technol. 2019, 33, 2903–2914. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, K.; Li, Y.; Xu, G.; Xiang, X. Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation. Ocean Eng. 2019, 174, 14–30. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Han, Q.L. Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans. Ind. Electron. 2018, 66, 8724–8732. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control; Addision Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Youcef-Toumi, K.; Ito, O. A time delay controller for systems with unknown dynamics. J. Dyn. Syst. Meas. Control 1990, 112, 133–142. [Google Scholar] [CrossRef]
- Hsia, T.; Gao, L. Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 2070–2075. [Google Scholar]
- Cho, G.R.; Kang, H.; Lee, M.J.; Li, J.H. Heading Control of URI-T, an Underwater Cable Burying ROV: Theory and Sea Trial Verification. J. Ocean Eng. Technol. 2019, 33, 178–188. [Google Scholar] [CrossRef]
- Chang, P.H.; Park, S.H. The development of anti-windup scheme and stick-slip compensator for time delay control. In Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), Philadelphia, PA, USA, 26 June 1998; Volume 6, pp. 3629–3633. [Google Scholar]
Direction | Forward | Lateral | Vertical | Total |
---|---|---|---|---|
RMS error (m) | 0.0838 | 0.1595 | 0.2663 | 0.3216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, G.R.; Kang, H.; Kim, M.-G.; Lee, M.-J.; Li, J.-H.; Kim, H.; Lee, H.; Lee, G. An Experimental Study on Trajectory Tracking Control of Torpedo-like AUVs Using Coupled Error Dynamics. J. Mar. Sci. Eng. 2023, 11, 1334. https://doi.org/10.3390/jmse11071334
Cho GR, Kang H, Kim M-G, Lee M-J, Li J-H, Kim H, Lee H, Lee G. An Experimental Study on Trajectory Tracking Control of Torpedo-like AUVs Using Coupled Error Dynamics. Journal of Marine Science and Engineering. 2023; 11(7):1334. https://doi.org/10.3390/jmse11071334
Chicago/Turabian StyleCho, Gun Rae, Hyungjoo Kang, Min-Gyu Kim, Mun-Jik Lee, Ji-Hong Li, Hosung Kim, Hansol Lee, and Gwonsoo Lee. 2023. "An Experimental Study on Trajectory Tracking Control of Torpedo-like AUVs Using Coupled Error Dynamics" Journal of Marine Science and Engineering 11, no. 7: 1334. https://doi.org/10.3390/jmse11071334
APA StyleCho, G. R., Kang, H., Kim, M.-G., Lee, M.-J., Li, J.-H., Kim, H., Lee, H., & Lee, G. (2023). An Experimental Study on Trajectory Tracking Control of Torpedo-like AUVs Using Coupled Error Dynamics. Journal of Marine Science and Engineering, 11(7), 1334. https://doi.org/10.3390/jmse11071334