On Detection of Anomalous VHF Propagation over the Adriatic Sea Utilising a Software-Defined Automatic Identification System Receiver
Abstract
:1. Introduction
2. Experimental Setup and Methodology
- 1.36 m length;
- 2.6 dBi gain;
- vertically polarized;
- VSWR < 1.6:1 in the frequency range from 156 to 162.5 MHz;
- characteristic impedance of 50 ohms.
3. Results Analysis and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- International Telecommunication Union. Recommendation ITU-R M.1371-5: Technical Characteristics for an Automatic Identification System Using Time Division Multiple Access in the VHF Maritime Mobile Frequency Band; Electronic Publication: Geneva, Switzerland, 2014. [Google Scholar]
- Ann, U.; Kügler, D.; Rohling, H. Analysis of Self-Organising Radio Systems for Position Reporting. J. Navig. 1999, 52, 196–202. [Google Scholar] [CrossRef]
- Harre, I. AIS Adding New Quality to VTS Systems. J. Navig. 2000, 53, 527–539. [Google Scholar] [CrossRef]
- Creech, J.; Ryan, J. AIS The Cornerstone of National Security? J. Navig. 2003, 56, 31–44. [Google Scholar] [CrossRef]
- Mou, J.M.; van der Tak, C.; Ligteringen, H. Study on collision avoidance in busy waterways by using AIS data. Ocean Eng. 2010, 37, 483–490. [Google Scholar] [CrossRef]
- Felski, A.; Jaskólski, K. Information unfitness as a factor constraining Automatic Identification System (AIS) application to anti-collision manoeuvring. Pol. Marit. Res. 2012, 19, 60–64. [Google Scholar] [CrossRef]
- Pallotta, G.; Vespe, M.; Bryan, K. Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction. Entropy 2013, 15, 2218–2245. [Google Scholar] [CrossRef] [Green Version]
- Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.-B. Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey from Data to Methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. [Google Scholar] [CrossRef]
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
- Svanberg, M.; Santen, V.; Horteborn, A.; Holm, H.; Finnsgard, C. AIS in maritime research. Mar. Policy 2019, 106, 103520. [Google Scholar] [CrossRef]
- Lang, H.; Wu, S.; Xu, Y. Ship Classification in SAR Images Improved by AIS Knowledge Transfer. IEEE Geosci. Remote Sens. Lett. 2018, 15, 439–443. [Google Scholar] [CrossRef]
- Prust, C. Introductory Communication Systems Course Using SDR. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/69417-introductory-communication-systems-course-using-sdr (accessed on 17 March 2023).
- Stewart, R.W.; Barlee, K.W.; Atkinson, D.S.W.; Crockett, L.H. Software Defined Radio Using MATLAB & Simulink and the RTL-SDR; Strathclyde Academic Media: Glasgow, UK, 2017. [Google Scholar]
- Cabrera, F.; Molina, N.; Tichavska, M.; Araña, V. Automatic Identification System modular receiver for academic purposes. Radio Sci. 2016, 51, 1038–1047. [Google Scholar] [CrossRef] [Green Version]
- Mathapo, K.F. A Software-Defined Radio Implementation of Maritime AIS. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2007. [Google Scholar]
- Romero-Godoy, D.; Molina-Padrón, N.; Cabrera, F.; Araña, V.; Jiménez, E. Design and implementation of a prototype with a low-cost SDR platform for the next generation of maritime communications. In Proceedings of the 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, 30 May–4 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Budroweit, J. Software-defined radio with flexible RF front end for satellite maritime radio applications. CEAS Space J. 2013, 8, 201–213. [Google Scholar] [CrossRef]
- Cruz, F.R.G.; Gania, R.C.M.; Garcia, B.W.C.; Nob, J.C.R. Software Defined Radio Implementation of a Single Channel Automatic Identification System Receiver. In Proceedings of the TENCON 2018–2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 2452–2455. [Google Scholar] [CrossRef]
- Marques, M.M.; Teles, D.; Lobo, V.; Capela, G. Low-cost AIS Transponder using an SDR device. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Bažec, M.; Dimc, F. Decoding AIS Messages with the use of Low Performance Sofware Defined Radio. In Proceedings of the 13th Annual Baška GNSS Conference Proceedings, Baska, Croatia, 12–15 May 2019; pp. 77–85. [Google Scholar]
- Ames, L.A.; Newman, P.; Rogers, T.F. VHF tropospheric overwater measurements far beyond the radio horizon. Proc. IRE 1955, 43, 1369–1373. [Google Scholar] [CrossRef]
- Chartier, A.T.; Hanley, T.R.; Emmons, D.J. Long-distance propagation of 162 MHz shipping information links associated with sporadic E. Atmos. Meas. Tech. 2022, 15, 6387–6393. [Google Scholar] [CrossRef]
- Tang, H.; Wang, H.; Jiao, L.; Li, Y. Analysis of Ultra-short Wave Propagation in Atmospheric Duct. In Proceedings of the 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Bruin, E.R. On Propagation Effects in Maritime Situation Awareness: Modelling the Impact of North Sea Weather Conditions on the Performance of AIS and Coastal Radar Systems. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2016. [Google Scholar]
- Constantinides, A.; Najat, S.; Haralambous, H. Atmospheric Ducting Interference on DAB, DAB+ Radio in Eastern Mediterranean. Electronics 2022, 11, 4183. [Google Scholar] [CrossRef]
- Lee, I.-S.; Noh, J.-H.; Oh, S.-J. A Survey and analysis on a troposcatter propagation model based on ITU-R recommendations. ICT Express 2022, in press. [Google Scholar] [CrossRef]
- Tang, W.; Cha, H.; Wei, M.; Tian, B. The effect of atmospheric ducts on the propagation of AIS signals. Aust. J. Electr. Electron. Eng. 2019, 16, 111–116. [Google Scholar] [CrossRef]
- Nooelec. NESDR SMArt v5 SDR. Available online: https://www.nooelec.com/store/sdr/sdr-receivers/nesdr-smart-sdr.html (accessed on 3 April 2023).
- MathWorks®. Ship Tracking Using AIS Signals. Available online: https://uk.mathworks.com/help/comm/ug/ship-tracking-using-ais-signals.html (accessed on 3 April 2023).
- Scan-Antenna. VHF74 Datasheet. Available online: https://www.scan-antenna.com/umbraco/surface/product/GetProductForPDF?productId=5365 (accessed on 3 April 2023).
- Marine Traffic—Global Ship Tracking Intelligence. Available online: https://www.marinetraffic.com (accessed on 3 April 2023).
- International Telecommunication Union, Maritime mobile Access and Retrieval System (MARS). Available online: https://www.itu.int/en/ITU-R/terrestrial/mars/Pages/default.aspx (accessed on 3 April 2023).
- Kells, L.M.; Kern, W.F.; Bland, J.R. Plane and Spherical Trigonometry; McGraw Hill Book Company, Inc.: New York, NY, USA, 1940. [Google Scholar]
- Richards, J.A. Radio Wave Propagation; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Jagannatham, A.K. Principles Of Modern Wireless Communications Systems; McGraw Hill Education (India) Private Limited: New Delhi, India, 2016. [Google Scholar]
- Balanis, C.A. Antenna Theory; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA) Guideline. In G1081 Provision of Virtual Marine Aids to Navigation, 2.1 ed.; IALA: Saint Germain en Laye, France, 2021.
- Son, H.K.; Lee, S.H. The Prediction of Radio Interference through Ducting and Proposal measures for Protecting Interference. In Proceedings of the Vehicular Technology Conference, IEEE 55th Vehicular Technology Conference, Birmingham, AL, USA, 6–9 May 2002. [Google Scholar]
- Viher, M.; Telišman Prtenjak, M.; Grisogono, B. A multi-year study of the anomalous propagation conditions along the coast of the Adriatic Sea. J. Atmos. Sol. Terr. Phys. 2013, 97, 75–84. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratories (ESRL). NOAA/ESRL Radiosonde Database. Available online: https://ruc.noaa.gov/raobs (accessed on 3 April 2023).
- University of Wyoming, College of Engineering, Department of Atmospheric Science. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 3 April 2023).
- Barrios, A.E.; Patterson, W.L. Advanced Propagation Model v.1.3.1 Computer Software Configuration Item (CSCI) Documents: Technical Document 3145; SPAWAR Systems Center: San Diego, CA, USA, 2002. [Google Scholar]
Target # | MMSI | Number of Decoded AIS Packets | Distance from the SDR AIS Receiver Antenna | Required Antenna Height for Line-of-Sight | Free Space Propagation Loss |
---|---|---|---|---|---|
48 | 992476138 | 94 | 471.0 NM | 42,260 m | 135.44 dB |
54 | 992476140 | 79 | 436.9 NM | 36,200 m | 134.79 dB |
64 | 992476139 | 89 | 435.3 NM | 35,927 m | 134.76 dB |
18 | 992476141 | 98 | 341.3 NM | 21,725 m | 132.65 dB |
22 | 992476132 | 104 | 273.6 NM | 13,697 m | 130.73 dB |
32 | 992476130 | 105 | 269.5 NM | 13,270 m | 130.59 dB |
60 | 992476127 | 106 | 241.0 NM | 10,489 m | 129.62 dB |
51 | 002470010 | 100 | 226.7 NM | 9216 m | 129.09 dB |
33 | 992476128 | 110 | 206.9 NM | 7590 m | 128.30 dB |
31 | 992476133 | 116 | 172.4 NM | 5134 m | 126.71 dB |
38 | 992476134 | 97 | 110.0 NM | 1907 m | 122.81 dB |
65 | 992476135 | 106 | 104.5 NM | 1698 m | 122.37 dB |
8 | 992476136 | 123 | 89.7 NM | 1195 m | 121.04 dB |
50 | 992476137 | 123 | 34.1 NM | 93 m | 112.64 dB |
MMSI | Type of AtoN | Number of Decoded AIS Packets | Distance from PFRI Antenna | Required Antenna Height for Line-of-Sight | Free Space Propagation Loss |
---|---|---|---|---|---|
992471104 | Synthetic | 2 | 190.1 NM | 6335 m | 127.56 dB |
992471105 | Synthetic | 4 | 178.4 NM | 5527 m | 127.01 dB |
992471107 | Synthetic | 4 | 136.8 NM | 3101 m | 124.70 dB |
992471109 | Synthetic | 79 | 110.0 NM | 1907 m | 122.81 dB |
992471113 | Synthetic | 73 | 109.6 NM | 1891 m | 122.78 dB |
992471112 | Synthetic | 87 | 108.9 NM | 1864 m | 122.72 dB |
992471110 | Synthetic | 85 | 107.6 NM | 1814 m | 122.62 dB |
992471162 | N/A | 4 | 95.5 NM | 1381 m | 121.58 dB |
992381550 | Real | 4 | 78.9 NM | 884 m | 119.92 dB |
992381330 | Real | 189 | 73.8 NM | 753 m | 119.34 dB |
992381560 | Real | 9 | 73.2 NM | 738 m | 119.27 dB |
992381060 | Real | 124 | 72.6 NM | 724 m | 119.20 dB |
992381200 | Real | 684 | 66.6 NM | 586 m | 118.45 dB |
992381340 | Real | 289 | 60.9 NM | 469 m | 117.68 dB |
992381010 | Real | 166 | 55.6 NM | 372 m | 116.88 dB |
992381190 | Real | 2919 | 49.3 NM | 271 m | 115.84 dB |
992381260 | Real | 2227 | 43.5 NM | 192 m | 114.75 dB |
992381100 | Real | 816 | 41.4 NM | 167 m | 114.32 dB |
992383050 | N/A | 253 | 40.2 NM | 153 m | 114.07 dB |
992381300 | Real | 1044 | 39.3 NM | 143 m | 113.87 dB |
992381170 | Real | 2 | 39.3 NM | 143 m | 113.87 dB |
992381110 | Real | 259 | 38.8 NM | 138 m | 113.76 dB |
992381480 | Real | 5 | 38.3 NM | 133 m | 113.65 dB |
992381220 | Real | 337 | 38.2 NM | 132 m | 113.62 dB |
992381040 | Real | 961 | 37.8 NM | 128 m | 113.53 dB |
992381320 | Real | 3700 | 28.0 NM | 48 m | 110.93 dB |
992381310 | Real | 3516 | 25.6 NM | 34 m | 110.15 dB |
992381120 | Real | 1356 | 25.3 NM | 32 m | 110.05 dB |
992381430 | Real | 768 | 21.0 NM | 14 m | 108.43 dB |
Station | WMO Number | Location | Elevation |
---|---|---|---|
Zagreb/Maksimir | 14240 | 45.82° N, 016.03° E | 123 m |
Zadar | 14430 | 44.09° N, 015.35° E | 84 m |
Udine/Rivolto | 16045 | 45.97° N, 013.05° E | 52 m |
Novara/Cameri | 16064 | 45.52° N, 008.67° E | 178 m |
Cuneo—Levaldigi | 16113 | 44.53° N, 007.62° E | 386 m |
San Pietro Capofiume | 16144 | 44.65° N, 011.62° E | 38 m |
Pratica di Mare | 16245 | 41.65° N, 012.43° E | 12 m |
Lecce | 16332 | 40.22° N, 018.15° E | 6 m |
Trapani/Birgi | 16429 | 37.92° N, 012.50° E | 14 m |
Station | Date and Time (UTC) | Refraction Type | ||
---|---|---|---|---|
Super-Refraction | Sub- Refraction | Ducting | ||
Zagreb | 25 February 2023, 12:00 | X | X | |
Zadar | 25 February 2023, 00:00 | X | ||
Udine | 25 February 2023, 12:00 | X | ||
26 February 2023, 12:00 | X | |||
Novara | 25 February 2023, 00:00 | X | ||
26 February 2023, 00:00 | X | |||
26 February 2023, 12:00 | X | |||
Cuneo | 25 February 2023, 00:00 | X | ||
26 February 2023, 00:00 | X | X | ||
San Pietro | 25 February 2023, 12:00 | X | X | |
Pratica di Mare | 25 February 2023, 00:00 | X | ||
25 February 2023, 12:00 | X | X | ||
26 February 2023, 00:00 | X | |||
26 February 2023, 12:00 | X | X | ||
27 February 2023, 00:00 | X | |||
Lecce | 25 February 2023, 00:00 | X | X | |
25 February 2023, 12:00 | X | X | X | |
26 February 2023, 00:00 | X | |||
26 February 2023, 12:00 | X | X | ||
Trapani | 25 February 2023, 00:00 | X | ||
25 February 2023, 12:00 | X | |||
26 February 2023, 00:00 | X | X | ||
26 February 2023, 12:00 | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valčić, S.; Brčić, D. On Detection of Anomalous VHF Propagation over the Adriatic Sea Utilising a Software-Defined Automatic Identification System Receiver. J. Mar. Sci. Eng. 2023, 11, 1170. https://doi.org/10.3390/jmse11061170
Valčić S, Brčić D. On Detection of Anomalous VHF Propagation over the Adriatic Sea Utilising a Software-Defined Automatic Identification System Receiver. Journal of Marine Science and Engineering. 2023; 11(6):1170. https://doi.org/10.3390/jmse11061170
Chicago/Turabian StyleValčić, Sanjin, and David Brčić. 2023. "On Detection of Anomalous VHF Propagation over the Adriatic Sea Utilising a Software-Defined Automatic Identification System Receiver" Journal of Marine Science and Engineering 11, no. 6: 1170. https://doi.org/10.3390/jmse11061170