Numerical Investigation into the Performance of an OWC Device under Regular and Irregular Waves
Abstract
:1. Introduction
2. Method
2.1. Governing Equations
2.2. Representation of Irregular Waves
2.3. Evaluation of the Hydrodynamic Efficiency
2.3.1. Evaluation of the Power Transmitted by the Waves
2.3.2. Evaluation of the Mechanical Power Absorbed by the OWC Device
3. Results
3.1. Validation of the Numerical Model
3.2. Hydrodynamic Efficiency of the OWC Device under Irregular Waves
3.3. Evaluation of the Potential Energy Production Obtainable by OWCs at Cetraro Harbor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Gunn, K.; StockWilliams, C. Quantifying the global wave power resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
 Falcão, A.F.O.; Henriques, J.C.C. Oscillatingwatercolumn wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
 Falcão, A.F.O. Overview on Oscillating Water Column Devices. Mater. Res. Proc. 2022, 20, 97816449017311. [Google Scholar]
 Gato, L.M.C.; Falcão, A.F.O. Aerodynamics of the wells turbine. Int. J. Mech. Sci. 1988, 30, 383–395. [Google Scholar] [CrossRef]
 Suzuki, M.; Arakawa, C. Guide vanes effect of wells turbine for wave power generator. Int. J. Offshore Polar Eng. 2000, 10, 153–159. [Google Scholar]
 Ning, D.; Zhou, Y.; Mayon, R.; Johanning, L. Experimental investigation on the hydrodynamic performance of a cylindrical dualchamber Oscillating Water Column device. Appl. Energy 2020, 260, 114252. [Google Scholar] [CrossRef]
 Çelik, A.; Altunkaynak, A. Experimental investigations on the performance of a fixedoscillating water column type wave energy converter. Energy 2019, 188, 116071. [Google Scholar] [CrossRef]
 Ram, K.; Faizal, M.; Ahmed, M.R.; Lee, Y. Experimental studies on the flow characteristics in an oscillating water column device. J. Mech. Sci. Technol. 2010, 24, 2043–2050. [Google Scholar] [CrossRef]
 Ning, D.; Wang, R.; Zou, Q.; Teng, B. An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter. Appl. Energy 2016, 168, 636–648. [Google Scholar] [CrossRef]
 Rezanejad, K.; Bhattacharjee, J.; Soares, C.G. Analytical and Numerical Study of Nearshore Multiple Oscillating Water Columns. J. Offshore Mech. Artic Eng. 2013, 8, V008T09A098. [Google Scholar]
 Kamath, A.; Bihs, H.; Arntsen, Ø.A. Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean. Eng. 2015, 102, 40–50. [Google Scholar] [CrossRef] [Green Version]
 Elhanaf, A.; Fleming, A.; Macfarlane, G.; Leong, Z. Numerical hydrodynamic analysis of an offshore stationary floating oscillating water column wave energy converter using CFD. Int. J. Nav. Archit. Ocean. Eng. 2017, 9, 77–99. [Google Scholar] [CrossRef] [Green Version]
 Luo, Y.; Nader, J.; Cooper, P.; Zhu, S. Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters. Renew. Energy 2014, 64, 255–265. [Google Scholar] [CrossRef]
 Teixeira, P.R.F.; Davyt, D.P.; Didier, E.; Ramalhais, R. Numerical simulation of an oscillating water column device using a code based on NavierStokes equations. Energy 2013, 61, 513–530. [Google Scholar] [CrossRef]
 Haghighi, A.T.; Nikseresht, A.H.; Hayati, M. Numerical analysis of hydrodynamic performance of a dualchamber Oscillating Water Column. Energy 2021, 221, 119892. [Google Scholar] [CrossRef]
 Carter, D.J.T. Estimation of wave spectra from wave height and period. Inst. Oceanogr. Sci. 1982, 135, 1–20. [Google Scholar]
 Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Gravity Waves. In Fluid Mechanics, 5th ed.; Elsevier: Waltham, MA, USA, 2012. [Google Scholar]
 Bradford, S.F. Numerical simulation of surf zone dynamics. J. Waterw. Port Costal Ocean. Eng. 2000, 126, 1–13. [Google Scholar] [CrossRef]
 Higuera, P.; Lara, J.L.; Losada, I.J. Simulating coastal engineering processes with OpenFOAM^{®}. Coast. Eng. 2013, 71, 119–134. [Google Scholar] [CrossRef]
 Ma, G.; Shi, F.; Kirby, J. Shockcapturing nonhydrostatic model for fully dispersive surface wave processes. Ocean. Model. 2012, 43, 22–35. [Google Scholar] [CrossRef]
 Cannata, G.; Petrelli, C.; Barsi, L.; Gallerano, F. Numerical integration of the contravariant integral form of the NavierStokes equations in timedependent curvilinear coordinate system for threedimensional free surface flows. Contin. Mech. Thermodyn. 2019, 31, 491–519. [Google Scholar] [CrossRef] [Green Version]
 Elhanafi, A.; Macfarlane, G.; Fleming, A.; Leong, Z. Investigations on 3D effects and correlation between wave height and lip submergence of an offshore stationary OWC wave energy converter. Appl. Ocean. Res. 2017, 64, 203–216. [Google Scholar] [CrossRef]
 Wang, C.; Zhang, Y. Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study. Energy 2021, 222, 119964. [Google Scholar] [CrossRef]
 Cannata, G.; Palleschi, F.; Iele, B.; Gallerano, F. A WaveTargeted Essentially NonOscillatory3D ShockCapturing Scheme for Breaking Wave Simulation. J. Mar. Sci. Eng. 2022, 10, 810. [Google Scholar] [CrossRef]
 MorrisThomas, M.T.; Irvin, R.J.; Thiagarajan, K.P. An Investigation into the Hydrodynamic Efficiency of an Oscillating Water Column. J. Offshore Mech. Arct. Eng. 2007, 129, 273–278. [Google Scholar] [CrossRef]
 Kinsman, B. Wind Waves: Their Generation and Propagation on the Ocean Surface; PrenticeHall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
 Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, A.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of windwave growth and swell decay during the joint North Sea wave project (JONSWAP). Ergänzungsheft Zur Dtsch. Hydrogr. Z. 1973. Available online: http://resolver.tudelft.nl/uuid:f204e18813b949d8a6dc4fb7c20562fc (accessed on 22 March 2023).
 Sheng, W.; Alcorn, R.; Lewis, A. On thermodynamics in the primary power conversion of oscillating water column wave energy converters. J. Renew. Sustain. Energy 2013, 5, 023105. [Google Scholar] [CrossRef] [Green Version]
 Curran, R.; Gato, L.M.C. The energy conversion performance of several types of Wells turbine designs. Proc. Inst. Mech. Eng. Part A J. Power Energy 1997, 211, 133–145. [Google Scholar] [CrossRef]
 Raghunathan, S. The wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 1995, 31, 335–386. [Google Scholar] [CrossRef]
 Ning, D.; Shi, J.; Zou, Q.; Teng, B. Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higherorder boundary element method). Energy 2015, 83, 177–188. [Google Scholar] [CrossRef]
 Koo, W.; Kim, M. Nonlinear TimeDomain Simulation of a LandBased Oscillating Water Column. J. Waterw. Port Coast. Ocean. Eng. 2010, 136, 276–285. [Google Scholar] [CrossRef]
d  0.92  m 
b  0.15  m 
s  0.04  m 
l  0.64  m 
a  0.005  m 
$${\mathit{H}}_{\mathit{s}}\text{}\left[\mathbf{m}\right]$$

$${\mathit{T}}_{\mathit{p}}\text{}\left[\mathbf{s}\right]$$

$${\mathit{P}}_{\mathit{p}\mathit{r}\mathit{o}\mathit{d}}\text{}[\mathbf{W}/\mathbf{m}]$$


0.29  4.51  545.44 
0.72  5.88  3264.33 
1.22  7.11  5010.10 
1.72  7.89  5330.71 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannata, G.; Simone, M.; Gallerano, F. Numerical Investigation into the Performance of an OWC Device under Regular and Irregular Waves. J. Mar. Sci. Eng. 2023, 11, 735. https://doi.org/10.3390/jmse11040735
Cannata G, Simone M, Gallerano F. Numerical Investigation into the Performance of an OWC Device under Regular and Irregular Waves. Journal of Marine Science and Engineering. 2023; 11(4):735. https://doi.org/10.3390/jmse11040735
Chicago/Turabian StyleCannata, Giovanni, Marco Simone, and Francesco Gallerano. 2023. "Numerical Investigation into the Performance of an OWC Device under Regular and Irregular Waves" Journal of Marine Science and Engineering 11, no. 4: 735. https://doi.org/10.3390/jmse11040735