Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Text Materials
2.2. Experiment Methods
2.2.1. Slump Test and Strength of Concrete
2.2.2. Bending Load and Carbonation Test
2.3. Microscopic Test
3. Test Results and Analysis
3.1. Effect of Nano-SiO2 on Slump and Strength of Concrete
3.2. Effect of Nano-SiO2 on Durability of Concrete under Coupling of Bending Load and Carbonation
3.2.1. Influence of Nano-SiO2 Content
3.2.2. Effect of Carbonation Age
3.2.3. The Effect of Stress Level
4. Enhancement of the Carbonation Resistance of Nano-Concrete under Bending Loads
4.1. SEM Test
4.2. XRD Test
5. Conclusions
6. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wei, X. Research on the Relationship between Strength and Durability of Concrete. Master’s Thesis, Nanchang University, Nanchang, China, 2018. (In Chinese). [Google Scholar]
- Cloete, S.; Giuffrida, A.; Romano, M.C.; Zaabout, A. The swing adsorption reactor cluster for post-combustion CO2 capture from cement plants. J. Clean. Prod. 2019, 223, 692–703. [Google Scholar] [CrossRef]
- Liu, Y.; Parolari, A.J.; Kumar, M.; Huang, C.-W.; Katul, G.G.; Porporato, A. Increasing atmospheric humidity and CO₂ concentration alleviate forest mortality risk. Proc. Natl. Acad. Sci. USA 2017, 114, 9918–9923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, X. Study on Some Durability Problems and Mechanism of Cement-Based Materials. Master’s Thesis, Hohai University, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Huang, Y.; Jingzhou, L.; Jianwei, W. Experimental study on carbonation characteristics of concrete under axial compression load. Concrete 2022, 5, 65–68. [Google Scholar]
- Yongsheng, J.; Linglei, Z.; Huirong, M. Experimental study and Mechanism Analysis of Concrete Carbonation reaction zone Definition. J. Build. Mater. 2012, 15, 624–628. (In Chinese) [Google Scholar]
- Shiping, Z.; Houxian, Z.; Zhengyue., F. Research on durability of Concrete in carbonation environment. Bull. Silic. 2014, 33, 1870–1873. (In Chinese) [Google Scholar]
- Khunthongkeaw, J.; Tangtermsirikul, S.; Leelawat, T. A study on carbonation depth prediction for fly ash concrete. Constr. Build. Mater. 2006, 20, 744–753. [Google Scholar] [CrossRef]
- Dhir, R.K.; Limbachiya, M.C.; McCarthy, M.J.; Chaipanich, A. Evaluation of Portland limestone cements for use in concrete construction. Mater. Struct. 2007, 40, 459–473. [Google Scholar] [CrossRef]
- Visser, J.H.M. Influence of the carbon dioxide concentration on the resistance to carbonation of concrete. Constr. Build. Mater. 2014, 67, 8–13. [Google Scholar] [CrossRef]
- Leemann, A.; Moro, F. Carbonation of concrete: The role of CO2 concentration, relative humidity and CO2 buffer capacity. Mater. Struct. 2016, 50, 30. [Google Scholar] [CrossRef]
- von Greve-Dierfeld, S.; Lothenbach, B.; Vollpracht, A.; Wu, B.; Huet, B.; Andrade, C.; Medina, C.; Thiel, C.; Gruyaert, E.; Vanoutrive, H.; et al. Understanding the carbonation of concrete with supplementary cementitious materials: A critical review by RILEM TC 281-CCC. Mater. Struct. 2022, 53, 136. [Google Scholar] [CrossRef]
- Xuhui, Z.; Bowen, L.; Ling, Y. Experimental study on Carbonation performance of concrete under different temperature and strength. Build. Struct. 2020, 50, 110–115. [Google Scholar]
- Branch, J.L.; Kosson, D.S.; Garrabrants, A.C.; He, P.J. The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement. Cem. Concr. Res. 2016, 89, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Yanru, Z.; Ming, L.; Lei, W.; Zhihui, W. Evolution law of compressive strength and pore structure of ordinary concrete after carbonation and high temperature. Mater. Rev. 2022, 36, 110–117. (In Chinese) [Google Scholar]
- Yoon, S.; Wang, K.; Weiss, W.J.; Shah, S.P. Interaction between Loading, Corrosion, and Serviceability of Reinforced Concrete. Materials 2000, 97, 637–644. [Google Scholar]
- Jun, R.; Panpan, G.; Zhiming, Z. Experimental study on carbonation performance of concrete considering bending and tensile load damage. Concrete 2019, 07, 59–63. (In Chinese) [Google Scholar]
- Ping, Z.; Shuguang, W.; Jiande, H.; Weiqing, L. Carbonation Resistance and Microstructure Evolution of Concrete under static Load. Concrete 2017, 10, 45–51. (In Chinese) [Google Scholar]
- Zhijun, Z.; Hao, W.; Yeqing, T.; Zhipeng, Z. Experimental study on Carbonation of concrete under nitric acid and bending load. J. Build. Mater. 2022, 26. (In Chinese) [Google Scholar]
- Hao, T.; Guoping, L.; Jie, L.; Yongxian, W. Experimental study on carbonation of concrete specimens under Stress. J. Tongji Univ. 2010, 38, 200–204+213. (In Chinese) [Google Scholar]
- Chen, D.; Liu, S.; Shen, J.; Sun, G.; Shi, J. Experimental study and modelling of concrete carbonation under the coupling effect of freeze-thaw cycles and sustained loads. J. Build. Eng. 2022, 52, 104390. [Google Scholar] [CrossRef]
- Sullivan-Green, L.; Dowding, C. Biological Age Dating of Infrastructure Cracks: Effect of Crack Width on Carbonation: Implications for Crack-Dating. Int. J. Appl. Sci. Technol. 2005, 2, 95–110. [Google Scholar]
- Alahmad, S.; Toumi, A.; Verdier, J.; François, R. Effect of crack opening on carbon dioxide penetration in cracked mortar samples. Mater. Struct. 2008, 42, 559–566. [Google Scholar] [CrossRef]
- Liu, Z.; Van den Heede, P.; De Belie, N. Effect of the Mechanical Load on the Carbonation of Concrete: A Review of the Underlying Mechanisms, Test Methods, and Results. Materials 2021, 14, 4407. [Google Scholar] [CrossRef]
- Hongguang, W. Shrinkage and Carbonation Properties of Nano-Concrete for Road Use. Master’s Thesis, Northeast Forestry University, Harbin, China, 2012. (In Chinese). [Google Scholar]
- Maohua, Z.; Wenyue, Z.; Yanyu, S. Durability of concrete with nano-particles under combined action of carbonation and alkali silica reaction. J. Asian Archit. Build. Eng. 2019, 18, 421–429. [Google Scholar]
- Peng, Z.; Kaixuan, Z. Shidong. Carbonation and impermeability of concrete reinforced by nanoparticles and steel fiber. J. Civ. Eng. Manag. 2017, 34, 73–76. (In Chinese) [Google Scholar]
- Jinyuan, W.; Ronggui, L.; Zhaowei, C. Research and prediction on carbonation resistance of SAP concrete modified by nano-silica. Concrete 2022, 06, 103–108. (In Chinese) [Google Scholar]
- Kunkun, Z. Research on Internal Damage of Concrete Modified by Nanomaterials under Multi-Factor Environment Coupling. Master’s Thesis, Xijing University, Xian, China, 2020. (In Chinese). [Google Scholar]
- Gao, Y.; Zhou, W.; Zeng, W.; Pei, G.; Duan, K. Preparation and flexural fatigue resistance of self-compacting road concrete incorporating nano-silica particles. Constr. Build. Mater. 2021, 278, 122380. [Google Scholar] [CrossRef]
- Baloch, H.; Usman, M.; Rizwan, S.A.; Hanif, A. Properties enhancement of super absorbent polymer (SAP) incorporated self-compacting cement pastes modified by nano silica (NS) addition. Constr. Build. Mater. 2019, 203, 18–26. [Google Scholar] [CrossRef]
- Qiu, Z.S. Study on the Influence of Silica Fume and Nano-Silica on the Strength of Different Aggregate Mortar. Master’s Thesis, Guangdong University of Technology, Guangdong, China, 2018. [Google Scholar]
- Zhang, M.; Lv, Z.; Cui, J.; Tian, Z.; Li, Z. Durability of Marine Concretes with Nanoparticles under Combined Action of Bending Load and Salt Spray Erosion. Adv. Mater. Sci. Eng. 2022, 2022, 1968770. [Google Scholar]
- Xie, F.T. Experimental Study on Durability of Nano-Concrete under Cl~-Permeation and AAR. Master’s Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- He, J. Study on Sulfate Resistance of Nano-Foundation Concrete. Master’s Thesis, Northeast Forestry University, Harbin, China, 2017. (In Chinese). [Google Scholar]
- Maohua, Z. Lifetime Performance of Nano Pavement Concrete. Ph.D Thesis, Harbin Institute of Technology, Harbin, China, 2007. (In Chinese). [Google Scholar]
Item | Diameter/nm | Specific Surface Area/(m2/g) | Purity/% | pH | Appearance |
---|---|---|---|---|---|
Nano-SiO2 | 25 | 580–630 | 99.9% | 7–9 | White-powder |
Chemical Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Alkali Content | Firing Loss |
---|---|---|---|---|---|---|---|---|
content | 20.89 | 5.38 | 4.01 | 63.35 | 1.56 | 2.70 | 0.4 | 1.54 |
Mixture Type | Water | Cement | Sand | Gravel | Nano-SiO2 | FDN | Defoamer |
---|---|---|---|---|---|---|---|
PC | 170.30 | 448.16 | 608.41 | 1129.91 | — | 1.75 | — |
NS05 | 170.30 | 445.92 | 608.41 | 1129.91 | 2.24 | 1.75 | 0.082 |
NS10 | 170.30 | 443.68 | 608.41 | 1129.91 | 4.48 | 1.75 | 0.082 |
NS20 | 170.30 | 439.20 | 608.41 | 1129.91 | 8.96 | 1.75 | 0.082 |
NS30 | 170.30 | 434.72 | 608.41 | 1129.91 | 13.44 | 1.75 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Tian, Z.; Cui, J. Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load. J. Mar. Sci. Eng. 2023, 11, 637. https://doi.org/10.3390/jmse11030637
Zhang M, Tian Z, Cui J. Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load. Journal of Marine Science and Engineering. 2023; 11(3):637. https://doi.org/10.3390/jmse11030637
Chicago/Turabian StyleZhang, Maohua, Zenong Tian, and Jiyin Cui. 2023. "Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load" Journal of Marine Science and Engineering 11, no. 3: 637. https://doi.org/10.3390/jmse11030637
APA StyleZhang, M., Tian, Z., & Cui, J. (2023). Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load. Journal of Marine Science and Engineering, 11(3), 637. https://doi.org/10.3390/jmse11030637