Unmanned Engine Room Surveillance Using an Autonomous Mobile Robot
Abstract
:1. Introduction
2. Proposed Method
2.1. Path Finding and Path Tracking
Algorithm 1 Main steps of path finding |
|
Algorithm 2 Main steps of path tracking |
|
2.2. Object Detection
Algorithm 3 Main steps of the coordinate conversion |
|
3. Results and Discussion
- The tire should be large enough not to be obstructed by the handle hole for opening and closing the engine room plate;
- The camera must be installed for engine room surveillance;
- LiDAR must be installed for engine room mapping.
Algorithm 4 Main steps of engine room experiment |
|
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMO Takes First Steps to Address Autonomous Ships. Available online: http://www.imo.org/en/MediaCentre/PressBriefings/Pages/08-MSC-99-MASS-scoping.aspx (accessed on 13 January 2023).
- Shahid, S.M.; Ko, S.; Kwon, S. Real-time abnormality detection and classification in diesel engine operations with convolutional neural network. Expert Syst. Appl. 2022, 192, 16233. [Google Scholar] [CrossRef]
- Raptodimos, Y.; Lazakis, I. Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications. Ships Offshore Struct. 2018, 13, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Ellefsen, A.L.; Bjorlykhaug, E.; Aesoy, V.; Zhang, H. An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components. IEEE Access 2019, 7, 16101–16109. [Google Scholar] [CrossRef]
- Korean Maritime Safety Tribunal, Marine Accident Statistics Report 2021. Available online: https://www.kmst.go.kr/web/board.do?menuIdx=135&bbsIdx=100087 (accessed on 13 January 2023).
- Korean Register of Shipping. Available online: https://www.krs.co.kr/KRRules/KRRules2022/data/data_other/korean/gc28k000.pdf (accessed on 15 January 2023).
- Kim, H.-H.; Hong, S.-J.; Nam, T.K. Design of PTZ Camera-Based Multiview Monitoring System for Efficient Observation in Vessel Engine Room. KOSOMES 2021, 27, 1129–1136. [Google Scholar] [CrossRef]
- Liu, Z. Review of Recent Developments in Fire Detection Technologies. J. Fire Prot. Eng. 2003, 13, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Meacham, B.J. International Developments in Fire Sensor Technology. J. Fire Prot. Eng. 1994, 6, 89–98. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wu, P.-H.; Chiou, Y.-C. An early fire-detection method based on image processing. In Proceedings of the International Conference on Image Processing, Singapore, 24–27 October 2004; Volume 3, pp. 1707–1710. [Google Scholar]
- Vipin, V. Image Processing Based Forest Fire Detection. Int. J. Adv. Res. Eng. Technol. 2012, 2, 87–95. [Google Scholar]
- Zaidi, N.I.; Lokman, N.A.A.; Daud, M.; Achmad, M.S.; Khor, A. Fire recognition using RGB and YCbCr color space. ARPN J. Eng. Appl. Sci. 2015, 10, 9786–9790. [Google Scholar]
- Foggia, P.; Saggese, A.; Vento, M. Real-Time Fire Detection for Video-Surveillance Applications Using a Combination of Experts Based on Color, Shape, and Motion. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1545–1556. [Google Scholar] [CrossRef]
- Mueller, M.; Karasev, P.; Kolesov, I.; Tannenbaum, A. Optical Flow Estimation for Flame Detection in Videos. IEEE Trans. Image Process. 2013, 22, 2786–2797. [Google Scholar] [CrossRef] [Green Version]
- Chunyu, Y.; Jun, F.; Jinjun, W. Video Fire Smoke Detection Using Motion and Color Features. Fire Technol. 2010, 46, 651–663. [Google Scholar] [CrossRef]
- Ye, W.; Zhao, J.; Wang, S.; Wang, Y.; Zhang, D.; Yuan, Z. Dynamic texture based smoke detection using Surfacelet transform and HMT model. Fire Saf. J. 2015, 73, 91–101. [Google Scholar] [CrossRef]
- Töreyin, B.U.; Cinbiş, R.G.; Dedeoğlu, Y.; Çetin, A.E. Fire detection in infrared video using wavelet analysis. Opt. Eng. 2007, 46, 067204. [Google Scholar] [CrossRef] [Green Version]
- Toreyin, B.U.; Dedeoglu, Y.; Cetin, A.E. Flame detection in video using hidden Markov models. In Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, 14 September 2005; p. II-1230. [Google Scholar]
- Park, K.; Bae, C. Smoke detection in ship engine rooms based on video images. IET Image Process. 2020, 14, 1141–1149. [Google Scholar] [CrossRef]
- Ko, B.C.; Cheong, K.-H.; Nam, J.-Y. Fire detection based on vision sensor and support vector machines. Fire Saf. J. 2009, 44, 322–329. [Google Scholar] [CrossRef]
- Gubbi, J.; Marusic, S.; Palaniswami, M. Smoke detection in video using wavelets and support vector machines. Fire Saf. J. 2009, 44, 1110–1115. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional Neural Networks Based Fire Detection in Surveillance Videos. IEEE Access 2018, 6, 18174–18183. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Baik, S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 2018, 288, 30–42. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Lv, Z.; Bellavista, P.; Yang, P.; Baik, S.W. Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1419–1434. [Google Scholar] [CrossRef]
- Dunnings, A.J.; Breckon, T.P. Experimentally Defined Convolutional Neural Network Architecture Variants for Non-Temporal Real-Time Fire Detection. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1558–1562. [Google Scholar]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Zhao, L.; Zhi, L.; Zhao, C.; Zheng, W. Fire-YOLO: A Small Target Object Detection Method for Fire Inspection. Sustainability 2022, 14, 4930. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An Improvement of the Fire Detection and Classification Method Using YOLOv3 for Surveillance Systems. Sensors 2021, 21, 6519. [Google Scholar] [CrossRef] [PubMed]
- Rokonuzzaman, M.; Mohajer, N.; Nahavandi, S.; Mohamed, S. Review and performance evaluation of path tracking controllers of autonomous vehicles. IET Intell. Transp. Syst. 2021, 15, 646–670. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Kim, S.-D. A Study on the Fire Detection Using YOLO Algorithm in Engine Room of a Ship. Master’s Thesis, Mokpo National Maritime University, Mokpo, Republic of Korea, 2020. [Google Scholar]
Equipment | Model (Manufacturer/Country) |
---|---|
Chassis | TRAXXAS 7407 1/10 Rally 4WD (Traxxas, USA) |
Controller | Jetson TX2 Developer Kit (Nvidia, USA) |
Motor Controller | VESC-X HW 4.12 (Maytech, China) |
Camera | Intel RealSense D455 (Intel, USA) |
LiDAR | RPLiDAR A2 (Slamtec, China) |
Inertial Measurement Unit (IMU) | Razor 9DOF IMU (SparkFun, USA) |
Battery | 8.4 V, 3000 mA (Traxxas, USA) |
Index | Value | |
---|---|---|
Arrival Rate | Straight (92%) | Total (88%) |
Curve + Straight (84%) | ||
Distance Average (from the destination) | Straight (23 cm) | Total (28 cm) |
Curve + Straight (32 cm) |
Parameter | Value |
---|---|
Batch | 64 |
Subdivisions | 2 |
Width | 416 |
Height | 416 |
Momentum | 0.9 |
Decay | 0.0005 |
Learning Rate | 0.001 |
Max_Batches | 10,000 |
Actual Fire | Non-Fire | |
---|---|---|
Predicted Fire | 707 (True Positive, TP) | 0 (False Positive, FP) |
Predicted Non-Fire | 12 (False Negative, FN) | 717 (True Negative, TN) |
Detection Rate | False Alarm Rate | Accuracy | |
---|---|---|---|
Tiny-YOLOv2 [33] | 0.9791 | 0.0153 | 0.9819 |
Tiny-YOLOv3 | 0.9833 | 0.0 | 0.9916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-D.; Bae, C.-O. Unmanned Engine Room Surveillance Using an Autonomous Mobile Robot. J. Mar. Sci. Eng. 2023, 11, 634. https://doi.org/10.3390/jmse11030634
Kim S-D, Bae C-O. Unmanned Engine Room Surveillance Using an Autonomous Mobile Robot. Journal of Marine Science and Engineering. 2023; 11(3):634. https://doi.org/10.3390/jmse11030634
Chicago/Turabian StyleKim, Seon-Deok, and Cherl-O Bae. 2023. "Unmanned Engine Room Surveillance Using an Autonomous Mobile Robot" Journal of Marine Science and Engineering 11, no. 3: 634. https://doi.org/10.3390/jmse11030634
APA StyleKim, S.-D., & Bae, C.-O. (2023). Unmanned Engine Room Surveillance Using an Autonomous Mobile Robot. Journal of Marine Science and Engineering, 11(3), 634. https://doi.org/10.3390/jmse11030634