Antifouling Potential of Diadema setosum and Sonneratia lanceolata Extracts for Marine Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collections and Extractions
2.1.1. D. setosum
2.1.2. S. lanceolata
2.2. Metabolomic Technique
2.3. Dereplication by Using HRESI-LCMS
2.4. Preparation of Panels Incorporated with D. setosum and S. lanceolata Crude Extracts
2.5. Antibiofilm Assays in the Laboratory
2.5.1. Crystal Violet Assay
2.5.2. Biofilm Formation Test in Aquarium
2.6. Antimacrofouling Activity of Painted Panels in Field Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Dereplication Studies of D. setosum and S. lanceolata Extract
3.2. Painted Panels with Crude Extract
3.3. Antibiofilm Assay in the Laboratory
3.3.1. Crystal Violet Assay
3.3.2. Biofilm Formation Test in Aquarium
3.4. Antimacrofouling Activity of Painted Panels in Field Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahms, H.U.; Dobretsov, S. Antifouling Compounds from Marine Macroalgae. Mar. Drugs 2017, 15, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciriminna, R.; Bright, F.V.; Pagliaro, M. Ecofriendly Antifouling Marine Coatings. ACS Sustain. Chem. Eng. 2015, 3, 559–565. [Google Scholar] [CrossRef]
- Kyei, S.K.; Darko, G.; Akaranta, O. Chemistry and Application of Emerging Ecofriendly Antifouling Paints: A Review. J. Coat. Technol. Res. 2020, 17, 315–332. [Google Scholar] [CrossRef]
- Palanichamy, S.; Subramanian, G. Antifouling Properties of Marine Bacteriocin Incorporated Epoxy Based Paint. Prog. Org. Coat. 2017, 103, 33–39. [Google Scholar] [CrossRef]
- Viju, N.; Punitha, S.M.J.; Satheesh, S. Antifouling Properties of Bacteria Associated with Marine Oyster crassostrea sp. Thalassas 2018, 34, 471–482. [Google Scholar] [CrossRef]
- Satheesh, S.; Ba-Akdah, M.A.; Al-Sofyani, A.A. Natural Antifouling Compound Production by Microbes Associated with Marine Macroorganisms—A Review. Electron. J. Biotechnol. 2016, 21, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yin, Y.; Jin, H.; Bing, W.; Jin, E.; Zhao, J.; Ren, L. Novel Marine Antifouling Coatings Inspired by Corals. Mater. Today Chem. 2020, 17, 100924. [Google Scholar] [CrossRef]
- Rattaya, S.; Benjakul, S.; Prodpran, T. Extraction, Antioxidative, and Antimicrobial Activities of Brown Seaweed Extracts, Turbinaria Ornata and Sargassum Polycystum, Grown in Thailand. Int. Aquat. Res. 2015, 7, 1–16. [Google Scholar] [CrossRef]
- Rima, M.; Trognon, J.; Latapie, L.; Chbani, A.; Roques, C.; Garah, F. el Seaweed Extracts: A Promising Source of Antibiofilm Agents with Distinct Mechanisms of Action against Pseudomonas Aeruginosa. Mar. Drugs 2022, 20, 92. [Google Scholar] [CrossRef]
- Lhullier, C.; Moritz, M.I.G.; Tabalipa, E.O.; Sardá, F.N.; Schneider, N.F.Z.; Moraes, M.H.; Constantino, L.; Reginatto, F.H.; Steindel, M.; Pinheiro, U.S.; et al. Biological Activities of Marine Invertebrates Extracts from the Northeast Brazilian Coast. Braz. J. Biol. 2020, 80, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Soliman, Y.A.A.; Brahim, A.M.; Moustafa, A.H.; Hamed, M.A.F. Antifouling Evaluation of Extracts from Red Sea Soft Corals against Primary Biofilm and Biofouling. Asian Pac. J. Trop. Biomed. 2017, 7, 991–997. [Google Scholar] [CrossRef]
- Patro, S.; Adhavan, D.; Jha, S. Fouling Diatoms of Andaman Waters and Their Inhibition by Spinal Extracts of the Sea Urchin Diadema Setosum (Leske, 1778). Int. Biodeterior. Biodegrad. 2012, 75, 23–27. [Google Scholar] [CrossRef]
- Nandhini, S.; Revathi, K. Antifouling Activity of Extracts from Mangroves against Biofouling Bacteria Isolated from Boats in Royapuram, Chennai, India. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 324–335. [Google Scholar] [CrossRef]
- Murzina, S.A.; Dgebuadze, P.Y.; Pekkoeva, S.N.; Voronin, V.P.; Mekhova, E.S.; Thanh, N.T.H. Lipids and Fatty Acids of the Gonads of Sea Urchin Diadema Setosum (Echinodermata) From the Coastal Area of the Nha Trang Bay, Central Vietnam. Eur. J. Lipid Sci. Technol. 2021, 123, 2000321. [Google Scholar] [CrossRef]
- Yusuf, M.; Fitriani Nur, U.A.; Rifai, A. In Vitro Antibacterial Activity and Potential Applications in Food of Sea Urchin (Diadema Setosum) from Cape of Palette, South Sulawesi. Food Res 2020, 4, 2139–2146. [Google Scholar] [CrossRef]
- Marimuthu, K.; Gunaselvam, P.; Rahman, M.A.; Xavier, R.; Arockiaraj, J.; Subramanian, S.; Yusoff, F.M.; Arshad, A. Antibacterial Activity of Ovary Extract from Sea Urchin Diadema Setosum. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1895–1899. [Google Scholar]
- Sabilu, Y.; Jafriati, M.R. Test of Bioactitvity and Antioxidant Activity of Sea Urchin (Diadema setosum) Gonads As Medicinal Ingredients Based on Marine Biodiversity. J. Southwest Jiaotong Univ. 2022, 57, 147–153. [Google Scholar] [CrossRef]
- Sachithanandam, V.; Lalitha, P.; Parthiban, A.; Mageswaran, T.; Manmadhan, K.; Sridhar, R. A Review on Antidiabetic Properties of Indian Mangrove Plants with Reference to Island Ecosystem. Evid. Based Complement. Altern. Med. 2019, 2019, 4305148. [Google Scholar] [CrossRef] [Green Version]
- Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Kumar, R.B.; Venkateswarulu, T.C. Studies on Phytochemical, Antioxidant, Antimicrobial Analysis and Separation of Bioactive Leads of Leaf Extract from the Selected Mangroves. J. King Saud Univ. Sci. 2020, 32, 842–847. [Google Scholar] [CrossRef]
- Abeysinghe, P.D. Antibacterial Activity of Some Medicinal Mangroves against Antibiotic Resistant Pathogenic Bacteria. Indian J. Pharm. Sci. 2010, 72, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Kokpol, U.; Chittawong, V.; Miles, D.H. Chemical Constituents of the Roots of Acanthus Illicifolius. J. Nat. Prod. 1986, 49, 355–356. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Kannathasan, K.; Venkatesalu, V.; Prabhakar, K. Antibacterial Activity of Some Salt Marsh Halophytes and Mangrove Plants against Methicillin Resistant Staphylococcus Aureus. World. J. Microbiol. Biotechnol. 2009, 25, 155–160. [Google Scholar] [CrossRef]
- Bandaranayake, W.M. Traditional and Medicinal Uses of Mangroves. Mangroves Salt Marshes 1998, 2, 133–148. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chandrasekaran, M.; Venkatesalu, V.; Hsu, M.J. Antibacterial and Antifungal Activities of Fatty Acid Methyl Esters of the Blind-Your-Eye Mangrove from India. Braz. J. Microbiol. 2007, 38, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Bandaranayake, W.M. Bioactivities, Bioactive Compounds and Chemical Constituents of Mangrove Plants. Wetl. Ecol. Manag. 2002, 10, 421–452. [Google Scholar] [CrossRef]
- Ragavan, P.; Ravichandran, K.; Mohan, P.M.; Sxaena, A.; Prasanth, R.S.; Jayaraj, R.S.C.; Saravanan, S. Short Communication: New Distributional Records of Sonneratia Spp. from Andaman and Nicobar Islands, India. Biodiversitas 2014, 15, 251–260. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, R.C.; Li, Y.Q.; Havanond, S.; Jaengjai, C.; Shi, S.H. Molecular Evidence for Natural Hybridization between Sonneratia Alba and S. Griffithii. J. Syst. Evol. 2008, 46, 391–395. [Google Scholar] [CrossRef]
- El-Sayed, W.M.M.; Elshaer, M.M.; Ibrahim, H.A.H.; El-Metwaly, M.E.A. Antimicrobial Agents from Sea Urchin (Diadema Setosum) Collected from the Red Sea, Egypt. Egypt J. Aquat. Biol. Fish. 2020, 24, 33–51. [Google Scholar] [CrossRef]
- Andriani, Y.; Tengku-Muhammad, T.S.; Mohamad, H.; Saidin, J.; Syamsumir, D.F.; Chew, G.S.; Wahid, M.E.A. Phaleria Macrocarpa Boerl. (Thymelaeaceae) Leaves Increase SR-BI Expression and Reduce Cholesterol Levels in Rats Fed a High Cholesterol Diet. Molecules 2015, 20, 4410–4429. [Google Scholar] [CrossRef] [Green Version]
- Azemi, A.K.; Mokhtar, S.S.; Sharif, S.E.T.; Rasool, A.H.G. Clinacanthus Nutans Attenuates Atherosclerosis Progression in Rats with Type 2 Diabetes by Reducing Vascular Oxidative Stress and Inflammation. Pharm. Biol. 2021, 59, 1432–1440. [Google Scholar] [CrossRef]
- Mazlan, N.W.; Tate, R.; Yusoff, Y.M.; Clements, C.; Edrada-Ebel, R. Metabolomics-Guided Isolation of Anti-Trypanosomal Compounds from Endophytic Fungi of the Mangrove Plant Avicennia Lanata. Curr. Med. Chem. 2019, 27, 1815–1835. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, L.; Zhang, T.; Viegelmann, C.; Martinez, I.J.; Cheng, C.; Dowdells, C.; Abdelmohsen, U.R.; Gernert, C.; Hentschel, U.; Edrada-Ebel, R.A. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts. Mar. Drugs 2014, 12, 3416–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmohsen, U.R.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.J.; Hentschel, U.; Edrada-Ebel, R.A. Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins a and B from a Marine Sponge Associated-Actinokineospora Sp. EG49. Mar. Drugs 2014, 12, 1220–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor Idora, M.S.; Ferry, M.; Wan Nik, W.B.; Jasnizat, S. Evaluation of Tannin from Rhizophora Apiculata as Natural Antifouling Agents in Epoxy Paint for Marine Application. Prog. Org. Coat. 2015, 81, 125–131. [Google Scholar] [CrossRef]
- Salama, A.J.; Satheesh, S.; Balqadi, A.A. Antifouling Activities of Methanolic Extracts of Three Macroalgal Species from the Red Sea. J. Appl. Phycol. 2018, 30, 1943–1953. [Google Scholar] [CrossRef]
- Leroy, C.; Delbarre, C.; Ghillebaert, F.; Compere, C.; Combes, D. Effects of Commercial Enzymes on the Adhesion of a Marine Biofilm-Forming Bacterium. Biofouling 2008, 24, 11–22. [Google Scholar] [CrossRef]
- Chen, L.; Xia, C.; Qian, P.Y. Optimization of Antifouling Coatings Incorporating Butenolide, a Potent Antifouling Agent via Field and Laboratory Tests. Prog. Org. Coat. 2017, 109, 22–29. [Google Scholar] [CrossRef]
- Viju, N.; Satheesh, S.; Punitha, S.M.J. Antifouling Activities of Antagonistic Marine Bacterium Pseudomonas Putida Associated with an Octopus. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 1113–1124. [Google Scholar] [CrossRef]
- Kitagawa, I.; Hamamoto, Y.; Kobayashi, M. Sulfonoglycolipid from the Sea Urchin Anthocidaris Crassispina a. Agassiz. Chem Pharm Bull. 1979, 27, 1394–1397. [Google Scholar] [CrossRef] [Green Version]
- Yende, S.; Harle, U.; Chaugule, B. Therapeutic Potential and Health Benefits of Sargassumspecies. Pharmacogn. Rev. 2014, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Plouguerné, E.; da Gama, B.A.P.; Pereira, R.C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4, 174. [Google Scholar] [CrossRef]
- Arunkumar, K.; Selvapalam, N.; Rengasamy, R. The Antibacterial Compound Sulphoglycerolipid 1-0 Palmitoyl-3-0(6-Sulpho-α-Quinovopyranosyl)-Glycerol from Sargassum Wightii Greville (Phaeophyceae). Bot. Mar. 2005, 48, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Bakar, K.; Mohamad, H.; Latip, J.; Seng Tan, H.; Gan, A.; Herng, M. Fatty Acids Compositions of Sargassum granuliferum and Dictyota dichotoma and Their Anti-Fouling Activities. J. Sustain. Sci. Manag. 2017, 12, 8–16. [Google Scholar]
- Bhattarai, H.D.; Yoo, K.L.; Kyeung, H.C.; Hong, K.L.; Hyun, W.S. The Study of Antagonistic Interactions among Pelagic Bacteria: A Promising Way to Coin Environmental Friendly Antifouling Compounds. Hydrobiologia 2006, 568, 417–423. [Google Scholar] [CrossRef]
- Fusetani, N. Biofouling and Antifouling. Nat. Prod. Rep. 2004, 21, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Correia-Da-Silva, M.; Sousa, E.; Antunes, J.; Pinto, M.; Vasconcelos, V.; Cunha, I. Antifouling Potential of Nature-Inspired Sulfated Compounds. Sci. Rep. 2017, 7, 42424. [Google Scholar] [CrossRef] [Green Version]
- Petitbois, J.G. Antifouling Compounds from Two Red Sea Organisms: A Hyrtios Sp. Sponge and an Okeania Sp. Cyanobacterium. Ph.D. Thesis, Hokaido University, Sapporo, Japan, 2018. [Google Scholar]
- Han, S.; Hanh Nguyen, T.T.; Hur, J.; Kim, N.M.; Kim, S.B.; Hwang, K.H.; Moon, Y.H.; Kang, C.; Chung, B.; Kim, Y.M.; et al. Synthesis and Characterization of Novel Astragalin Galactosides Using β-Galactosidase from Bacillus Circulans. Enzym. Microb. Technol. 2017, 103, 59–67. [Google Scholar] [CrossRef]
- González, A.G.; Alvarenga, N.L.; Ravelo, A.G.; Bazzocchi, I.L.; Ferro, E.A.; Navarro, A.G.; Moujir, L.M. Scutione, a New Bioactive Norquinonemethide Triterpene from Maytenus Scutioides (Celastraceae). Bioorg. Med. Chem. 1996, 4, 815–820. [Google Scholar] [CrossRef]
- Cheriet, T.; Mancini, I.; Seghiri, R.; Benayache, F.; Benayache, S. Chemical Constituents and Biological Activities of the Genus Linaria (Scrophulariaceae). Nat. Prod. Res. 2015, 29, 1589–1613. [Google Scholar] [CrossRef]
- Rogers, T.O.; Birnbaum, J. Biosynthesis of Fosfomycin by Streptomyces Fradiae. Antimicrob. Agents Chemother. 1974, 5, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Hendlin, D.; Stapley, E.O.; Jackson, M.; Wallick, H.; Miller, A.K.; Wolf, F.J.; Miller, T.W.; Chaiet, L.; Kahan, F.M.; Foltz, E.L.; et al. Phosphonomycin, a New Antibiotic Produced by Strains of Streptomyces. Science (1979) 1969, 166, 122–123. [Google Scholar] [CrossRef] [PubMed]
- de Simeis, D.; Serra, S. Actinomycetes: A Never-Ending Source of Bioactive Compounds—An Overview on Antibiotics Production. Antibiotics 2021, 10, 483. [Google Scholar] [CrossRef]
- Viju, N.; Punitha, S.M.J.; Satheesh, S. Antifouling Potential of Palmyra Palm (Borassus Flabellifer) Fruit Husk Extract. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 1005–1015. [Google Scholar] [CrossRef]
- Samia, K. Hamdona, S.; Abo Taleb, A.; Salem, D.; Tadros, H. Fouling Control by New Egyptian Natural Sources in Marine Aquaculture. J. Chem. Biol. Phys. Sci. 2019, 9, 92–105. [Google Scholar] [CrossRef]
Ingredients | Quantity (g/L) |
---|---|
NaCl | 24.615 |
KCl | 0.783 |
Na2SO4 | 4.105 |
MgCl2(H2O)6 | 11.06 |
CaCl2(H2O)2 | 1.558 |
1st Coating (Panels Coated with Anti-Corrosive Primer) | Dry Film Thickness (µm) | Average (µm) |
Panel 1 | 156.00 | 151.30 ± 6.40 |
Panel 2 | 151.00 | |
Panel 3 | 160.00 | |
Panel 4 | 148.00 | |
Panel 5 | 150.00 | |
Panel 6 | 161.00 | |
Panel 7 | 143.00 | |
Panel 8 | 153.00 | |
Panel 9 | 149.00 | |
Panel 10 | 142.00 | |
2nd Coating (Blank Paint and Painted Panels with Crude Extracts) | Dry Film Thickness (µm) | Average (µm) |
Panel 1 | 262.00 | 253.80 ± 7.79 |
Panel 2 | 243.00 | |
Panel 3 | 250.00 | |
Panel 4 | 257.00 | |
Panel 5 | 265.00 | |
Panel 6 | 240.00 | |
Panel 7 | 253.00 | |
Panel 8 | 257.00 | |
Panel 9 | 254.00 | |
Panel 10 | 257.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Ramzi, M.; Rahman, N.I.A.; Rawi, N.N.; Bhubalan, K.; Ariffin, F.; Mazlan, N.W.; Saidin, J.; Danish-Daniel, M.; Siong, J.Y.F.; Bakar, K.; et al. Antifouling Potential of Diadema setosum and Sonneratia lanceolata Extracts for Marine Applications. J. Mar. Sci. Eng. 2023, 11, 602. https://doi.org/10.3390/jmse11030602
Mohd Ramzi M, Rahman NIA, Rawi NN, Bhubalan K, Ariffin F, Mazlan NW, Saidin J, Danish-Daniel M, Siong JYF, Bakar K, et al. Antifouling Potential of Diadema setosum and Sonneratia lanceolata Extracts for Marine Applications. Journal of Marine Science and Engineering. 2023; 11(3):602. https://doi.org/10.3390/jmse11030602
Chicago/Turabian StyleMohd Ramzi, Mujahidah, Nor Izzati Abd Rahman, Nurul Najihah Rawi, Kesaven Bhubalan, Fazilah Ariffin, Noor Wini Mazlan, Jasnizat Saidin, Muhd Danish-Daniel, Julius Yong Fu Siong, Kamariah Bakar, and et al. 2023. "Antifouling Potential of Diadema setosum and Sonneratia lanceolata Extracts for Marine Applications" Journal of Marine Science and Engineering 11, no. 3: 602. https://doi.org/10.3390/jmse11030602
APA StyleMohd Ramzi, M., Rahman, N. I. A., Rawi, N. N., Bhubalan, K., Ariffin, F., Mazlan, N. W., Saidin, J., Danish-Daniel, M., Siong, J. Y. F., Bakar, K., Mohd Zin, N. A., Azemi, A. K., & Ismail, N. (2023). Antifouling Potential of Diadema setosum and Sonneratia lanceolata Extracts for Marine Applications. Journal of Marine Science and Engineering, 11(3), 602. https://doi.org/10.3390/jmse11030602