Large-Eddy Simulation of Wave Attenuation and Breaking on a Beach with Coastal Vegetation Modelled as Porous Medium
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Validation of the Numerical Model
3.2. Coastal Vegetation and Wave Parameters under Study
3.3. Instantaneous Velocity Field
3.4. Phase-Averaged Free-Surface Elevation
3.5. Wave-Induced Current and Wave Setup
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vuik, V.; Jonkman, S.N.; Borsje, B.W.; Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 2016, 116, 42–56. [Google Scholar] [CrossRef]
- Salauddin, M.; O’Sullivan, J.; Abolfathi, S.; Dong, S.; Pearson, J. Distribution of Individual Wave Overtopping on a Sloping Structure with a Permeable Foreshore. Int. Conf. Coast. Eng. 2020, 36, 54. [Google Scholar] [CrossRef]
- Sánchez-González, J.F.; Sánchez-Rojas, V.; Memos, C.D. Wave attenuation due to Posidonia oceanica meadows. J. Hydraul. Res. 2011, 49, 503–514. [Google Scholar] [CrossRef]
- Stratigaki, V.; Manca, E.; Prinos, P.; Losada, I.J.; Lara, J.L.; Sclavo, M.; Amos, C.L.; Cáceres, I.; Sánchez-Arcilla, A. Large-scale experiments on wave propagation over Posidonia oceanica. J. Hydraul. Res. 2011, 49, 31–43. [Google Scholar] [CrossRef]
- Koftis, T.; Prinos, P.; Stratigaki, V. Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study. Coast. Eng. 2013, 73, 71–83. [Google Scholar] [CrossRef]
- Blackmar, P.J.; Cox, D.T.; Wu, W.C. Laboratory Observations and Numerical Simulations of Wave Height Attenuation in Heterogeneous Vegetation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 56–65. [Google Scholar] [CrossRef]
- Ozeren, Y.; Wren, D.G.; Wu, W. Experimental Investigation of Wave Attenuation through Model and Live Vegetation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 04014019. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 2014, 83, 82–92. [Google Scholar] [CrossRef]
- Garzon, J.L.; Maza, M.; Ferreira, C.M.; Lara, J.L.; Losada, I.J. Wave attenuation by Spartina saltmarshes in the Chesapeake Bay under storm surge conditions. J. Geoph. Res. Oceans 2019, 124, 5220–5243. [Google Scholar] [CrossRef]
- Kobayashi, N.; Raichlen, A.W.; Asano, T. Wave attenuation by vegetation. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 30–48. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; Kirby, J.T.; Hwang, P.A. Wave diffraction due to areas of energy dissipation. J. Waterw. Port Coast. Ocean Eng. 1984, 110, 67–79. [Google Scholar] [CrossRef]
- Mendez, F.; Losada, I. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 2004, 51, 103–118. [Google Scholar] [CrossRef]
- Karambas, T.; Koftis, T.; Prinos, P. Modeling of nonlinear wave attenuation due to vegetation. J. Coast. Res. 2016, 32, 142–152. [Google Scholar]
- Yang, Z.; Tang, J.; Shen, Y. Numerical study for vegetation effects on coastal wave propagation by using nonlinear Boussinesq model. Appl. Ocean Res. 2018, 70, 32–40. [Google Scholar] [CrossRef]
- Mattis, S.; Kees, C.; Wei, M.; Dimakopoulos, A.; Dawson, C. Computational model for wave attenuation by flexible vegetation. J. Waterw. Port Coast. Ocean Eng. 2019, 145, 04018033. [Google Scholar] [CrossRef]
- Wong, C.Y.H.; Dimakopoulos, A.S.; Trinh, P.H.; Chapman, J.S. Multiple-scales analysis of wave evolution in the presence of rigid vegetation. J. Fluid Mech. 2022, 935, A3. [Google Scholar] [CrossRef]
- Hadadpour, S.; Paul, M.; Oumeraci, H. Numerical investigation of wave attenuation by rigid vegetation based on a porous media approach. J. Coast. Res. 2019, 92, 92–100. [Google Scholar] [CrossRef]
- Liu, P.L.F.; Pengzhi, L.; Chang, K.; Sakakiyama, T. Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 322–330. [Google Scholar] [CrossRef]
- Hsu, T.J.; Sakakiyama, T.; Liu, P. A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng. 2002, 46, 25–50. [Google Scholar] [CrossRef]
- Dimas, A.A.; Chalmoukis, I.A. An adaptation of the immersed boundary method for turbulent flows over three-dimensional coastal/fluvial beds. Appl. Math. Model. 2020, 88, 905–915. [Google Scholar] [CrossRef]
- Lesieur, M.; Metais, O. New Trends in Large-Eddy Simulations of Turbulence. Annu. Rev. Fluid Mech. 1996, 28, 45–82. [Google Scholar] [CrossRef]
- Rodi, W. Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Eng. Ind. Aerodyn. 1997, 69–71, 55–75. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–165. [Google Scholar] [CrossRef]
- Van Driest, E.R. On turbulent flow near a wall. J. Aeronaut. Sci. 1956, 23, 1007–1011. [Google Scholar] [CrossRef]
- Koutrouveli, T.I.; Dimas, A.A. Wave and hydrodynamic processes in the vicinity of a rubble-mound, permeable, zero-freeboard breakwater. J. Mar. Sci. Eng. 2020, 8, 206. [Google Scholar] [CrossRef]
- Van Gent, M.R.A. Wave Interaction with Permeable Coastal Structures. Ph.D. Thesis, Delft University, Delft, The Netherlands, 1995. [Google Scholar]
- Yang, J.; Stern, F. Sharp interface immersed-boundary/level-set method for wave–body interactions. J. Comput. Phys. 2009, 228, 6590–6616. [Google Scholar] [CrossRef]
- Jacobsen, N.G.; Fuhrman, R.; Fredsøe, J. A wave generation toolbox for the open-source CFD library: OpenFoam®. Int. J. Num. Methods Fluids 2012, 70, 1073–1088. [Google Scholar] [CrossRef]
- Leftheriotis, G.A.; Chalmoukis, I.A.; Oyarzun, A.G.; Dimas, A.A. A Hybrid Parallel Numerical Model for Wave-Induced Free-Surface Flow. Fluids 2021, 6, 350. [Google Scholar] [CrossRef]
- Oyarzun, A.G.; Chalmoukis, I.A.; Leftheriotis, G.A.; Dimas, A.A. A GPU-based algorithm for efficient LES of high Reynolds number flows in heterogeneous CPU/GPU supercomputers. Appl. Math. Model. 2020, 85, 141–156. [Google Scholar] [CrossRef]
- Augustin, L.N.; Irish, J.L.; Lynett, P. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Eng. 2009, 56, 332–340. [Google Scholar] [CrossRef]
- Hu, J.; Mei, C.C.; Chang, C.W.; Liu, P.L.F. Effect of flexible coastal vegetation on waves in water of intermediate depth. Coast. Eng. 2021, 168, 103937. [Google Scholar] [CrossRef]
- Bouma, T.J.; de Vries, M.B.; Low, E.; Peralta, G.; Tánczos, I.C.; van de Koppel, J.; Herman, P.M.J. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 2005, 86, 2187–2199. [Google Scholar] [CrossRef]
- Keimer, K.; Schürenkamp, D.; Miescke, F.; Kosmalla, V.; Lojek, O.; Goseberg, N. Ecohydraulics of Surrogate Salt Marshes for Coastal Protection: Wave–Vegetation Interaction and Related Hydrodynamics on Vegetated Foreshores at Sea Dikes. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 04021035. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf similarity. In Proceedings of the 14th Coastal Engineering Conference, Copenhagen, Denmark, 24–28 June 1974; pp. 466–480. [Google Scholar]
- Manousakas, M.; Salauddin, M.; Pearson, J.; Denissenko, P.; Williams, H.; Abolfathi, S. Effects of Seagrass Vegetation on Wave Runup Reduction—A Laboratory Study. IOP Conf. Ser. Earth Environ. Sci. 2022, 1072, 012004. [Google Scholar] [CrossRef]
Case | CV | CV Equivalent Porosity (neq) | CV Cross-Shore Length (LCV) | H (m) | T (s) |
---|---|---|---|---|---|
1 | no | NA | NA | 0.18 | 1.68 |
2 | yes | 0.98 | 5.2 m | 0.18 | 1.68 |
3 | yes | 0.90 | 5.2 m | 0.18 | 1.68 |
4 | yes | 0.86 | 5.2 m | 0.18 | 1.68 |
5 | yes | 0.82 | 5.2 m | 0.18 | 1.68 |
6 | yes | 0.82 | 2.6 m | 0.18 | 1.68 |
Case | neq | LCV (m) | x1/d0 | Hb (m) | db (m) |
---|---|---|---|---|---|
1 | - | - | 19.7 | 0.20 | 0.25 |
2 | 0.98 | 5.2 m | 20.1 | 0.19 | 0.21 |
3 | 0.90 | 5.2 m | 18.0 | 0.17 | 0.30 |
4 | 0.86 | 5.2 m | 17.5 | 0.17 | 0.33 |
5 | 0.82 | 5.2 m | 17.0 | 0.18 | 0.35 |
6 | 0.82 | 2.6 m | 21.8 | 0.16 | 0.14 |
Case | neq | LCV (m) | /d0 | Ru/d0 | x1s/d0 |
---|---|---|---|---|---|
1 | - | - | 0.010 | 0.031 | 26.62 |
2 | 0.98 | 5.2 m | 0.021 | 0.039 | 26.50 |
3 | 0.90 | 5.2 m | 0.024 | 0.046 | 26.56 |
4 | 0.86 | 5.2 m | 0.023 | 0.046 | 26.55 |
5 | 0.82 | 5.2 m | 0.023 | 0.043 | 26.54 |
6 | 0.82 | 2.6 m | 0.014 | 0.034 | 26.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalmoukis, I.A.; Leftheriotis, G.A.; Dimas, A.A. Large-Eddy Simulation of Wave Attenuation and Breaking on a Beach with Coastal Vegetation Modelled as Porous Medium. J. Mar. Sci. Eng. 2023, 11, 519. https://doi.org/10.3390/jmse11030519
Chalmoukis IA, Leftheriotis GA, Dimas AA. Large-Eddy Simulation of Wave Attenuation and Breaking on a Beach with Coastal Vegetation Modelled as Porous Medium. Journal of Marine Science and Engineering. 2023; 11(3):519. https://doi.org/10.3390/jmse11030519
Chicago/Turabian StyleChalmoukis, Iason A., Georgios A. Leftheriotis, and Athanassios A. Dimas. 2023. "Large-Eddy Simulation of Wave Attenuation and Breaking on a Beach with Coastal Vegetation Modelled as Porous Medium" Journal of Marine Science and Engineering 11, no. 3: 519. https://doi.org/10.3390/jmse11030519
APA StyleChalmoukis, I. A., Leftheriotis, G. A., & Dimas, A. A. (2023). Large-Eddy Simulation of Wave Attenuation and Breaking on a Beach with Coastal Vegetation Modelled as Porous Medium. Journal of Marine Science and Engineering, 11(3), 519. https://doi.org/10.3390/jmse11030519