Influence of Wave–Current Interaction on a Cyclone-Induced Storm-Surge Event in the Ganges-Brahmaputra-Meghna Delta: Part 2—Effects on Wave
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Model Delft3D-Wave
2.1.1. Wave Kinematics
2.1.2. Spectral Action Balance Equation
2.1.3. Depth-Induced Wave Breaking
2.1.4. Whitecapping
2.1.5. Bottom Friction
2.2. Description of Scenarios
3. Result and Discussions
3.1. Effects of Wave–Current Interaction on Significant Wave Height
3.2. Influence of Effective Wind Stress on SWH
3.3. Influence of Water Level, Current, and Wave Direction on SWH
3.4. Wave Dissipation
3.5. Model Limitations and Uncertainties
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mellor, G.L. The Three-Dimensional Current and Surface Wave Equations. J. Phys. Oceanogr. 2003, 33, 1978–1989. [Google Scholar] [CrossRef]
- Mellor, G.L.; Donelan, M.A.; Oey, L.-Y. A Surface Wave Model for Coupling with Numerical Ocean Circulation Models. J. Atmos. Ocean. Technol. 2008, 25, 1785–1807. [Google Scholar] [CrossRef]
- Mellor, G.L. A Combined Derivation of the Integrated and Vertically Resolved, Coupled Wave–Current Equations. J. Phys. Oceanogr. 2015, 45, 1453–1463. [Google Scholar] [CrossRef]
- Lewis, M.J.; Palmer, T.; Hashemi, R.; Robins, P.; Saulter, A.; Brown, J.; Lewis, H.; Neill, S. Wave-Tide Interaction Modulates Nearshore Wave Height. Ocean Dyn. 2019, 69, 367–384. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L. A Numerical Study on the Effects of Wave–Current–Surge Interactions on the Height and Propagation of Sea Surface Waves in Charleston Harbor during Hurricane Hugo 1989. Cont. Shelf Res. 2009, 29, 1454–1463. [Google Scholar] [CrossRef]
- Viitak, M.; Maljutenko, I.; Alari, V.; Suursaar, Ü.; Rikka, S.; Lagemaa, P. The impact of surface currents and sea level on the wave field evolution during St. Jude storm in the eastern Baltic Sea. Oceanologia 2016, 58, 176–186. [Google Scholar] [CrossRef]
- Yu, X.; Pan, W.; Zheng, X.; Zhou, S.; Tao, X. Effects of Wave-Current Interaction on Storm Surge in the Taiwan Strait: Insights from Typhoon Morakot. Cont. Shelf Res. 2017, 146, 47–57. [Google Scholar] [CrossRef]
- Kang, K.; Kim, S. Wave–Tide Interactions during a Strong Storm Event in Kyunggi Bay, Korea. Ocean Eng. 2015, 108, 10–20. [Google Scholar] [CrossRef]
- Tolman, H.L. A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Rusu, L.C.; Bernardino, M.; Soares, C.G. Modelling the Influence of Currents on Wave Propagation at the Entrance of the Tagus Estuary. Ocean Eng. 2011, 38, 1174–1183. [Google Scholar] [CrossRef]
- Hopkins, J.; Elgar, S.; Raubenheimer, B. Observations and model simulations of wave-current interaction on the inner shelf. J. Geophys. Res. Ocean. 2016, 121, 198–208. [Google Scholar] [CrossRef]
- Rybalko, A.; Myslenkov, S. Analysis of Current Influence on the Wind Wave Parameters in the Black Sea Based on SWAN Simulations. J. Ocean Eng. Mar. Energy 2022. [Google Scholar] [CrossRef]
- Gonazález, F.I. A Case Study of Wave–Current–Bathymetry Interactions at the Columbia River Entrance. J. Phys. Oceanogr. 1984, 14, 1065–1078. [Google Scholar] [CrossRef]
- Wolf, J.; Prandle, D. Some observations of wave–current interaction. Coast. Eng. 1999, 37, 471–485. [Google Scholar] [CrossRef]
- Song, H.; Kuang, C.; Hua, X.; Ma, Z. Wave-current interactions during extreme weather conditions in southwest of Bohai Bay, China. Ocean Eng. 2020, 216, 108068. [Google Scholar] [CrossRef]
- Murty, P.L.N.; Sandhya, K.G.; Bhaskaran, P.K.; Jose, F.; Gayathri, R.; Balakrishnan Nair, T.M.; Srinivasa Kumar, T.; Shenoi, S.S.C. A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coast. Eng. 2014, 93, 71–81. [Google Scholar] [CrossRef]
- Brown, J.; Bolaños, R.; Wolf, J. The Depth-Varying Response of Coastal Circulation and Water Levels to 2D Radiation Stress When Applied in a Coupled Wave-Tide-Surge Modelling System during an Extreme Storm. Coast. Eng. 2013, 82, 102–113. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T. The Effect of Wind-Wave-Current Interaction on Air-Sea Momentum Fluxes and Ocean Response in Tropical Cyclones. J. Phys. Oceanogr. 2009, 39, 1019–1034. [Google Scholar] [CrossRef]
- Hu, K.; Ding, P.; Wang, Z.; Yang, S. A 2D/3D Hydrodynamic and Sediment Transport Model for the Yangtze Estuary, China. J. Mar. Syst. 2009, 77, 114–136. [Google Scholar] [CrossRef]
- Samiksha, V.; Vethamony, P.; Antony, C.; Bhaskaran, P.; Nair, B. Wave-current interaction during Hudhud cyclone in the Bay of Bengal. Nat. Hazards Earth Syst. Sci. 2017, 17, 2059–2074. [Google Scholar] [CrossRef] [Green Version]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res. Ocean. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Pleskachevsky, A.; Eppel, D.P.; Kapitza, H. Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island. Ocean Dyn. 2009, 59, 451–461. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Elahi, M.W.E.; Wang, X.H.; Salcedo-Castro, J.; Ritchie, E.A. Influence of wave-current interaction on a cyclone-induced storm surge event in the Ganges-Brahmaputra-Meghna Delta: Part 1. Effects on water level. J. Mar. Sci. Eng. 2023; submitted. [Google Scholar]
- Phillips, O.M. The Dynamics of the Upper Ocean; CUP Archive: Cambridge, UK, 1966. [Google Scholar]
- Whitham, G.B. Linear and Nonlinear Waves; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP); Deutches Hydrographisches Institut: Hamburg, Germany, 1973; p. 95. [Google Scholar]
- Mei, C.C. The Applied Dynamics of Ocean Surface Waves; World Scientific: Singapore, 1989. [Google Scholar]
- Komen, G.J.; Hasselmann, S.; Hasselmann, K. On the existence of a fully developed wind-sea spectrum. J. Phys. Ocean. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Deltares. Simulation of Short-Creseted Waves with SWAN: Deflt3D-WAVE, User Manual; Deltares: Delft, The Netherlands, 2018. [Google Scholar]
- Battjes, J.A.; Janssen, J.P.F.M. Energy Loss and Set-Up Due to Breaking of Random Waves. In Coastal Engineering 1978; ASCE: Reston, VA, USA, 1978; pp. 569–587. [Google Scholar] [CrossRef]
- SWAN Team. SWAN User Manual, SWAN Cycle III version 40.91; Delft University of Technology: Delft, The Netherlands, 2014; p. 123. [Google Scholar]
- Krien, Y.; Testut, L.; Islam, A.K.M.S.; Bertin, X.; Durand, F.; Mayet, C.; Tazkia, A.R.; Becker, M.; Calmant, S.; Papa, F.; et al. Towards improved storm surge models in the northern Bay of Bengal. Cont. Shelf Res. 2017, 135, 58–73. [Google Scholar] [CrossRef]
- Chiu, S.; Small, C. Observations of Cyclone-Induced Storm Surge in Coastal Bangladesh. J. Coast. Res. 2016, 321, 1149–1161. [Google Scholar] [CrossRef]
- Mamnun, N.; Bricheno, L.M.; Rashed-Un-Nabi, M. Forcing ocean model with atmospheric model outputs to simulate storm surge in the Bangladesh coast. Trop. Cyclone Res. Rev. 2020, 9, 117–134. [Google Scholar] [CrossRef]
- Hussain, M.; Tajima, Y.; Hossain, M.; Das, P. Impact of Cyclone Track Features and Tidal Phase Shift upon Surge Characteristics in the Bay of Bengal along the Bangladesh Coast. J. Mar. Sci. Eng. 2017, 5, 52. [Google Scholar] [CrossRef]
- Lewis, M.; Bates, P.; Horsburgh, K.; Neal, J.; Schumann, G. A Storm Surge Inundation Model of the Northern Bay of Bengal Using Publicly Available Data. Q. J. R. Meteorol. Soc. 2013, 139, 358–369. [Google Scholar] [CrossRef]
- Prakash, K.R.; Pant, V. On the wave-current interaction during the passage of a tropical cyclone in the Bay of Bengal. Deep. Res. Part II Top. Stud. Oceanogr. 2020, 172, 104658. [Google Scholar] [CrossRef]
Run Name | Simulation | Description | Coupling Method |
---|---|---|---|
Run 1 | Control run (WCI) | FLOW and WAVE simulation | Two-way |
Run 2 * | Wave only (Only wave, OWC) | WAVE simulation | One-way (WAVE to FLOW) |
Run 3 | Wave only (WL + Cu to Wv) | WAVE simulation using water level and current from Run 5 | |
Run 4 | Wave only (WL to Wv) | WAVE simulation using water level from Run 5 | One-way (FLOW to WAVE) |
Run 5 | Wave only (Cu to Wv) | WAVE simulation using current from Run 5 |
Model Setup | Run Name | Description |
---|---|---|
With WCI | Run 6 | Control run (Run 1) considering only depth-induced breaking |
Run 7 | Control run (Run 1) considering only whitecapping | |
Run 8 | Control run (Run 1) considering only bottom friction | |
Only Wave | Run 9 | WAVE simulation (Run 2) considering only depth-induced breaking |
Run 10 | WAVE simulation (Run 2) considering only whitecapping | |
Run 11 | WAVE simulation (Run 2) considering only bottom friction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.H.; Elahi, M.W.E. Influence of Wave–Current Interaction on a Cyclone-Induced Storm-Surge Event in the Ganges-Brahmaputra-Meghna Delta: Part 2—Effects on Wave. J. Mar. Sci. Eng. 2023, 11, 298. https://doi.org/10.3390/jmse11020298
Wang XH, Elahi MWE. Influence of Wave–Current Interaction on a Cyclone-Induced Storm-Surge Event in the Ganges-Brahmaputra-Meghna Delta: Part 2—Effects on Wave. Journal of Marine Science and Engineering. 2023; 11(2):298. https://doi.org/10.3390/jmse11020298
Chicago/Turabian StyleWang, Xiao Hua, and Md Wasif E. Elahi. 2023. "Influence of Wave–Current Interaction on a Cyclone-Induced Storm-Surge Event in the Ganges-Brahmaputra-Meghna Delta: Part 2—Effects on Wave" Journal of Marine Science and Engineering 11, no. 2: 298. https://doi.org/10.3390/jmse11020298
APA StyleWang, X. H., & Elahi, M. W. E. (2023). Influence of Wave–Current Interaction on a Cyclone-Induced Storm-Surge Event in the Ganges-Brahmaputra-Meghna Delta: Part 2—Effects on Wave. Journal of Marine Science and Engineering, 11(2), 298. https://doi.org/10.3390/jmse11020298