Air Quality and Atmospheric Emissions from the Operation of the Main Mexican Port in the Gulf of Mexico from 2019 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimations and Measurements
2.2.1. Estimated Emissions
2.2.2. Air Quality and Meteorology Monitoring
3. Results and Discussion
3.1. Estimated Emissions from Ships
3.2. Meteorology
3.3. Air Quality
3.4. Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type of Vessel | Class | Load It Transports | Ratio |
---|---|---|---|
Liquid or tank | TANK | Ship intended for the transport of liquid goods, but different from fuels or petroleum derivatives. | 0.35 |
Bulk carrier | BCARR | Used for the transport of agricultural or mineral bulk products. | 0.39 |
General cargo | GRALCARG | Ships for goods that do not require special care. | 0.35 |
Ro-Ro merchandise | RO-RO | Roll-on/roll-off ships (cars) and off-road equipment, trailers or auto parts, is named for the acronym RO-RO for “roll-on/roll off”. | 0.39 |
Container carrier | CONT | Ships that carry goods inside containers. | 0.27 |
Fluids | FLUID | Ships in which various fluids that are not derived from oil are transported. | 0.35 |
Appendix B
ME (kW) = 14.602 GT 0.6278
ME (kW) = 47.115 GT 0.504
ME (kW) = 1.2763 GT 0.9154
ME (kW) = 45.7 GT 0.5237
ME (kW) =1.0839 GT 0.9617
(annual) | Annual Emissions of Pollutant i for Port p Due to ME during the Maneuver Phase (kg/Year) |
Annual emissions of pollutant i for port p due to AE during the Maneuver or Hoteling phase (kg/year) | |
Maximum power of MEs by type of ship by port p (kW) based on the average GT (GT∗) by type of ship by port p | |
Ratio to calculate the power of the AE from that of the ME by type of ship b | |
Number of operations (In/Out) by type of ship by port p | |
ME load factor by type of vessel by operation or (Maneuver or Hoteling) | |
AE load factor by type of vessel by operation or (Maneuver or Hoteling) | |
Fuel consumption by type of fuel used c (RO or MD) | |
Time spent by type of vessel by operation o (h) | |
Emission factor by type of pollutant i, fuel c, engine t and operation o (g/kg fuel consumed) |
Appendix C
Kg/Year | RO-RO | GENERAL CARGO | TANKS | FLUIDS | BULK CARRIERS (AGR) | BULK CARRIERS (MIN) | CONTAINER CARRIER | Annual 2019 |
---|---|---|---|---|---|---|---|---|
NOX | 542.5 | 527.6 | 1160 | 205 | 1072 | 562 | 507.8 | 567.7 |
(250–829) | (326–963) | (532–2072) | (147–360) | (792–1431.5) | (381–769) | (270–709) | (304–937) | |
CO | 45.8 | 35 | 77.8 | 13.7 | 71.9 | 37.7 | 42.6 | 43.5 |
(21–70) | (22–64.6) | (35.7–139) | (10–24) | (53–96) | (25.5–51.6) | (22.7–59.5) | (22.8–71) | |
NMHC | 14.6 | 14.5 | 32 | 5.7 | 29.6 | 15.5 | 13 | 15 |
(6.7–22) | (9–26.6) | (14.7–57) | (4–9.9) | (21.9–39.6) | (10.5–21) | (7–18.6) | (8–25) | |
SO2 | 278 | 17.6 | 38.8 | 6.9 | 35.8 | 18.8 | 260 | 70 |
(128–424.8) | (11–32) | (17.8–69) | (5–12) | (26.5–48) | (12.7–25.7) | (138–363) | (21–261) | |
TSP | 20.8 | 12.5 | 27 | 4.8 | 25 | 13 | 19.5 | 18 |
(9.6–32) | (7.7–22.8) | (12.6–49) | (3.5–8.5) | (18.8–34) | (9–18) | (10–27) | (9–28.7) | |
PM10 | 17 | 10 | 22.5 | 4 | 20.7 | 11 | 16 | 14.8 |
(8–26) | (6–18.7) | (10–40) | (3–7) | (15–27.7) | (7–15) | (8.5–22) | (7–23.5) | |
PM2.5 | 15.7 | 9 | 20.7 | 3.6 | 19 | 10 | 15 | 13.8 |
(7–24) | (5.8–17) | (9.5–37) | (2.6–6) | (14–25.5) | (6.8–13.7) | (8–21) | (7–22) | |
CO2 | 30,150 | 28,761 | 63,247 | 11,199 | 58,432 | 30,635 | 28,220 | 31,177 |
(13,917–46,053) | (17,787–52,521) | (28,994–11,298) | (8026–1965) | (43,194–78,042) | (20,769–41,927) | (15,003–39,396) | (16,786–51,628) | |
CH4 | 0.3 | 0.27 | 0.6 | 0.106 | 0.55 | 0.3 | 0.26 | 0.29 |
(0.13–0.4) | (0.168–0.5) | (0.27–1.06) | (0.01–0.19) | (0.4–0.7) | (0.19–0.4) | (0.14–0.37) | (0.16–0.49) |
Kg/Year | RO-RO | GENERAL CARGO | TANKS | FLUIDS | BULK CARRIERS (AGR) | BULK CARRIERS (MIN) | CONTAINER CARRIER | Annual 2020 |
---|---|---|---|---|---|---|---|---|
NOX | 506 | 523 | 1075 | 203 | 1138 | 562 | 402 | 524 |
(293–701) | (297–910.5) | (437–2348) | (152–483) | (760–1530.6) | (354–809) | (222.7–652.7) | (263.6–907.8) | |
CO | 42.7 | 35 | 72 | 13.6 | 76 | 37.7 | 33.7 | 39 |
(24.8–59) | (20–61) | (29–157) | (10–32) | (51–102.6) | (23.8–54) | (18.7–54.8) | (20–67) | |
NMHC | 13.6 | 14.5 | 29.7 | 5.6 | 31 | 15.5 | 10.55 | 14 |
(8–19) | (8–25) | (12–64.8) | (4–13) | (21–42) | (9.8–22) | (5.8–17) | (7–24.6) | |
SO2 | 259.5 | 17.5 | 36 | 6.8 | 38.06 | 18.8 | 206 | 58 |
(150–359) | (10–30.5) | (14.6–78.5) | (5–16) | (25–51) | (12–27) | (114–334) | (19–199) | |
TSP | 19 | 12 | 25 | 4.8 | 26.9 | 13 | 15 | 15.5 |
(11–27) | (7–21.6) | (10–55.6) | (3.6–11) | (18–36) | (8–19) | (8.6–25) | (8–27) | |
PM10 | 16 | 10 | 20.83 | 3.9 | 22 | 11 | 12.6 | 12.7 |
(9–22) | (5.8–17.7) | (8.5–45.5) | (3–9) | (14.7–29.7) | (7–15.7) | (7–20.5) | (6–22) | |
PM2.5 | 14.7 | 9 | 19 | 3.6 | 20 | 10 | 11.9 | 11.8 |
(8.5–20) | (5–16) | (8–42) | (2.7–8.6) | (13.6–27) | (6–14) | (6.6–19) | (6–20.7) | |
CO2 | 28,137 | 28,530 | 58,608.5 | 11,088 | 62,052 | 30,651.5 | 22,359 | 29,003 |
(16,289–38,972) | (16,200–49,641) | (23,841–127,992) | (8272–2634) | (41,447–83,448) | (19,321–44,112) | (12,375–36,277) | (14,606–50,176) | |
CH4 | 0.26 | 0.27 | 0.55 | 0.105 | 0.586 | 0.289 | 0.2 | 0.27 |
(0.15–0.37) | (0.15–0.47) | (0.22–1.208) | (0.078–0.25) | (0.4–0.78) | (0.18–0.42) | (0.12–0.3) | (0.14–0.47) |
Appendix D
Appendix E
References
- Westerlund, J.; Hallquist, M.; Jallquist, A.M. Characterization of fleet emissions from ships through multi-individual determination of size-resolved particle emissions in a coastal area. Atmos. Environ. 2015, 112, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.; Russo, M.; Gama, C.; Borrego, C. How important are maritime emissions for the air quality: At European and national scale. Environ. Pollut. 2018, 242 Pt A, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; Patton, P.A.; Ma, W.; Kan, H.; Wu, L.; Fung, F.; Wang, S.; Ding, D.; Walker, K. Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. Environ. Pollut. 2020, 263 Pt A, 114643. [Google Scholar] [CrossRef] [PubMed]
- Murcia, G.J.C. Analysis and Measurement of SOx, CO2, PM and NOx emissions in port auxiliary vessels. Environ. Monit. Assess. 2021, 193, 374. [Google Scholar] [CrossRef]
- Bailey, D.; Solomon, G. Pollution prevention at ports: Clearing the air. Environ. Impact Assess. Rev. 2004, 24, 749–774. [Google Scholar] [CrossRef]
- Carr, E.W.; Corbett, J.J. Ship Compliance in Emission Control Areas: Technology Costs and Policy Instruments. Environ. Sci. Technol. 2015, 49, 9584–9591. [Google Scholar] [CrossRef]
- Formentin, G.; Forrest, J. A Critical Review of Emissions Estimation Techniques for Four International Shipping Port Studies. Air Qual. Clim. Change 2020, 54, 25–30. Available online: https://ebsco.uam.elogim.com/login.aspx?direct=true&db=eih&AN=144878119&lang=es&site=eds-live&scope=site (accessed on 6 October 2022).
- Tokuslu, A. Assessment of Environmental Costs of Ship Emissions: Case Study on the Samsun Port. Environ. Eng. Manag. J. 2021, 20, 739–747. [Google Scholar] [CrossRef]
- Yang, Z.L.; Zhang, O.; Caglayan, I.D.; Jenkinson, S.; Bonsall, J.; Wang, J.; Huang, M.; Yan, X.P. Selection of techniques for reducing shipping NOx and SOx emissions. Transp. Res. Part D Transp. Environ. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Kuzu, S.L.; Bilgili, L.; Kiliç, A. Estimation and dispersion analysis of shipping emissions in Bandirma Port, Turkey. Environ. Dev. Sustain. 2020, 23, 10288–10308. [Google Scholar] [CrossRef]
- Trozzi, C. Emission Estimate Methodology for Maritime Navigation. In Proceedings of the US EPA 19th International Emissions Inventory Conference, San Antonio, TX, USA, 27–30 September 2010. Techne Consulting Report ETC.EF.10 DD, May 2010. [Google Scholar]
- Chen, D.; Zhao, Y.; Nelson, P.; Li, Y.; Wang, X.; Zhou, Y.; Lang, J.; Guo, X. Estimating Ship Emissions Based on AIS Data for Port of Tianjin, China. Atmos. Environ. 2016, 145, 10–18. [Google Scholar] [CrossRef]
- Miola, A.; Ciuffo, B. Estimating air emissions from ships: Meta-analysis of modeling approaches and available data sources. Atmos. Environ. 2011, 45, 2242–2251. [Google Scholar] [CrossRef]
- Murena, F.; Mocerino, L.; Quaranta, F.; Toscano, D. Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 2018, 187, 70–83. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B.; Gritsenko, D.; Johansson, L.; Pekka, J.J. Air emissions from ships in port: Does regulation make a difference? Transp. Policy 2019, 75, 128–140. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Li, Y.; Lang, J.; Zhou, Y.; Guo, X.; Zhao, Y. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014. Sci. Total Environ. 2017, 609, 776–787. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.Q.; Wang, W.; Gu, J.; Wu, X.J.; Feng, X. Air emission inventory of container ports'cargo handling equipment with activity-based “bottom-up” method. Adv. Mech. Eng. 2017, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M.; Martinez, F.; Arevalo, G.; Gassó, S.; Baldasano, J.M. An improved system for modeling Spanish emissions: HERMESv2.0. Atmos. Environ. 2013, 81, 209–221. [Google Scholar] [CrossRef]
- Baldasano, J.M.; Güereca, L.P.; López, E.; Gassó, S.; Jimenez-Guerrero, P. Development of a high-resolution (1 km × 1 km, 1 h) emission model for Spain: The High-Elective Resolution Modeling Emission System (HERMES). Atmos. Environ. 2008, 42, 7215–7233. [Google Scholar] [CrossRef]
- Ekmekçioğlu, A.; Kuzu, S.L.; Ünlügençoğlu, K.; Çelebi, U.B. Assessment of shipping emission factors through monitoring and modelling studies. Sci. Total Environ. 2020, 743, 140742. [Google Scholar] [CrossRef]
- Zhanmin, L.; Xiaohui, L.; Junlan, F.; Qianzhu, F.; Yan, Z.; Xin, Y. Influence of Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly Time-Resolved Online Measurements and Numerical Simulation in Shanghai. Environ. Sci. Technol. 2017, 51, 202–211. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from Ship Emissions: A Global Assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Lim, H.; Lim, Y.; Lee, H. Implication of activity-based vessel emission to improve regional air inventory in a port area. Atmos. Environ. 2019, 203, 262–270. [Google Scholar] [CrossRef]
- Zetterdahl, M.; Moldanová, J.; Pei, X.; Pathak, R.K.; Demirdjian, B. Impact of the 0.1% fuel sulfur content limit in SECA on particle and gaseous emissions from marine vessels. Atmos. Environ. 2016, 145, 338–345. [Google Scholar] [CrossRef]
- Senlin, L.; Zhenkun, Y.; Xiaohui, C.; Minghong, W.; Guoying, S.; Jiamo, F.; Paul, D. The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM2.5) in Shanghai atmosphere. Atmos. Environ. 2008, 42, 7205–7214. [Google Scholar] [CrossRef]
- Ledoux, F.; Roche, C.; Cazier, F.; Beaugard, C.; Courcot, D. Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. J. Environ. Sci. 2018, 71, 56–66. [Google Scholar] [CrossRef]
- Castro, M.; Pires, J.C.M. Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmos. Pollut. Res. 2019, 10, 827–834. [Google Scholar] [CrossRef]
- Martínez-Moya, J.; Vazquez-Paja, B.; Gimenez, M.J.A. Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia. Energy Policy 2019, 131, 312–319. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Pikelnaya, O.; Polidori, A.; Ban-Weiss, G.; Sioutas, C. Impact of particulate matter (PM) emission from ships, locomotives, and freeways in the communities near the ports of Los Angeles (POLA) and Long Beach (POLB) on the air quality in the Los Angeles county. Atmos. Environ. 2018, 195, 159–169. [Google Scholar] [CrossRef]
- Fameli, K.M.; Kotrikla, A.M.; Psanis, C.; Biskos, G.; Polydoropoulou, A. Estimation of the emissions by transport in two port cities of the Northeastern Mediterranean, Greece. Environ. Pollut. 2020, 257, 113598. [Google Scholar] [CrossRef]
- Ault, A.P.; Moore, M.J.; Furutani, H.; Prather, K.A. Impact of emissions from the Los Angeles Port region on San Diego air quality during regional transport events. Environ. Sci. Technol. 2009, 43, 3500–3506. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Ma, W.; Fu, Q.; Yang, X.; Li, C.; Zhou, B.; Yu, Q.; Chen, L. Characteristics and ship traffic source identification of air pollutants in China's largest port. Atmos. Environ. 2013, 64, 277–286. [Google Scholar] [CrossRef]
- Wiacek, A.; Li, L.; Tobin, K.; Mitchell, M. Characterization of trace gas emissions at an intermediate port. Atmos. Chem. Phys. 2018, 18, 13787–13812. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, H.; Eden, R.; Zhang, X.; Fine, P.M.; Katzenstein, A.; Miller, W.J.; Ospital, J.; Teffera, S.; Cocker, R.D. Primary particulate matter from ocean-going engines in the Southern California Air Basin. Environ. Sci. Technol. 2009, 43, 5398–5402. [Google Scholar] [CrossRef]
- Monios, J.; Bergqvist, R.; Woxenius, J. Port-centric cities: The role of freight distribution in defining the port-city relationship. J. Transp. Geogr. 2018, 66, 53–64. [Google Scholar] [CrossRef]
- Li, Z.; Feng, C.; Duan, Y. Air Pollution and Control of Cargo Handling Equipments in Ports. E3S Web Conf. 2019, 93, 02001. [Google Scholar] [CrossRef]
- Di Vaio, A.; Varriale, L.; Alvino, F. Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy. Energy Policy 2018, 122, 229–240. [Google Scholar] [CrossRef]
- Bravo, A.H.; Sosa, E.R.; Sánchez, A.P.; Fuentes, G.G.; Tami, P.L. Green Port in Mexico: Development of Combustion Emission Inventory in the Port of Veracruz, Mexico. In Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, Long Beach, CA, USA, 14–17 June 2014; Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84941281910&origin=inward&txGid=324b70f7b7136e808af480c88de953dd (accessed on 16 January 2023).
- Sosa, E.R.; Retama, H.A.; Sánchez, A.P. Sulphur Dioxide and Particles (PM10) Air Quality in a Port Located on the Gulf of Mexico. 2020. Available online: https://www.eventscribe.com/2020/ACEVIRTUAL/fsPopup.asp?Mode=presInfo&PresentationID=739115 (accessed on 25 November 2021).
- González, R.A.I.; Mugica, Á.V.; Sosa, E.R.; Sánchez, Á.P. Air Quality in the Port of Veracruz. Air and Waste Management Association’s Annual Conference and Exhibition, A&WMA’s 114th Annual Conference & Exhibition Paper # 983701. 2021. Available online: https://www.eventscribe.net/2021/ACE2021/fsPopup.asp?efp=Q1VMVk1YT04xMzk0Nw&PresentationID=901109&rnd=0.7607236&mode=presinfo (accessed on 25 November 2021).
- Fuentes, G.G.; Baldasano, R.J.M.; Sosa, E.R.; Granados, H.E.; Zamora, V.E.; Antonio, D.R.; Kahl, W.J. Estimation of Atmospheric Emissions from Maritime Activity in the Veracruz Port, Mexico. J. Air Waste Manag. Assoc. 2021, 71, 934–948. [Google Scholar] [CrossRef]
- Lang, X.; Shumiao, Y.; Jihong, C.; Jia, S. The Effect of COVID-19 Pandemic on Port Performance: Evidence from China. Ocean. Coast. Manag. 2021, 209, 105660. [Google Scholar] [CrossRef]
- Guevara, M.V. Inventario de emisiones atmosféricas de puertos y aeropuertos de España para el año 2008. In Projecte/Treball Final de Carrera, UPC, Escola Técnica Superior d'Enginyeria Industrial de Barcelona; Departament de Projectes d'Enginyeria: Barcelona, España, 2010; Available online: http://hdl.handle.net/2099.1/10640 (accessed on 9 December 2022).
- Brook, R.J.; Wiebe, H.A.; Woodhouse, A.S.; Audette, V.C.; Dannt, F.T.; Callaghan, S.; Piechowski, M.; Zlotorzynska, D.E.; Dloughyt, F.J. Temporal and spatial relationships in fine particle strong acidity, sulphate, PM10 and PM2.5 across multiple Canadian locations. Atmos. Environ. 1997, 31, 4223–4236. [Google Scholar] [CrossRef]
- Ruiz-Guerra, I.; Molina-Moreno, V.; Cortes-García, F.J.; Núñez-Cacho, P. Prediction of the impact on air quality of the cities receiving cruise tourism: The case of the Port of Barcelona. Heliyon 2019, 5, e01280. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.E.; Magaña, V.; Caetano, E.; Kusunoki, S. Cold surge activity over the Gulf of Mexico in a warmer climate. Frontiers in Earth Science. Atmos. Sci. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Pozo, D.; Marín, J.C.; Raga, G.B.; Arévalo, J.; Baumgardner, D.; Córdova, A.M.; Mora, J. Synoptic and local circulations associated with events of high particulate pollution in Valparaiso, Chile. Atmos. Environ. 2017, 196, 164–178. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B. Environmental cost and eco-efficiency from vessel emissions in Las Palmas Port. Transp. Res. Part E Logist. Transp. Rev. 2015, 83, 126–140. [Google Scholar] [CrossRef]
- Song, S.K.; Shon, Z.H. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea. Environ. Sci. Pollut. Res. Int. 2014, 21, 6612–6622. [Google Scholar] [CrossRef]
- Wahlström, J.; Karvosenoja, N.; Porvari, P. Reports of Finnish Environment Institute (FEI). Research Program for Global Change. In Ship Emissions and Technical Emission Reduction Potential in the Northern Baltic Sea; FEI: Helsinki, Finland, 2006; Volume 8, p. 73. ISBN 952-11-2277-3. [Google Scholar]
- Environ International Corporation (EIC). Port of Oakland, Seaport Air Emissions Inventory; EIC: Novato, CA, USA, 2013. [Google Scholar]
- Lopez-Aparicio, S.; Tønnesen, D.; Thanh, T.N.; Neilson, H. Shipping emissions in a Nordic port: Assessment of mitigation strategies. Transp. Res. Part D Transp. Environ. 2017, 53, 205–216. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Z.; Malekian, R.; Li, Z. Estimation of vessel emissions inventory in Qingdao Port based on big data analysis. Symmetry 2018, 10, 452. Available online: https://www.mdpi.com/2073-8994/10/10/452 (accessed on 9 December 2022). [CrossRef] [Green Version]
- Progiou, A.G.; Bakeas, E.; Evangelidou, E.; Kontogiorgi Ch Lagkadinou, E.; Sebos, I. Air pollutant emissions from Piraeus port: External costs and air quality levels. Transp. Res. Part D Transp. Environ. 2021, 91, 102586. [Google Scholar] [CrossRef]
- Tovar, B.; Tichavska, M. Environmental cost and eco-efficiency from vessel emissions under diverse SOx regulatory frameworks: A special focus on passenger port hubs. Transp. Res. Part D Transp. Environ. 2019, 69, 1–12. [Google Scholar] [CrossRef]
- Gibbs, D.; Rigot-Muller, P.; Mangan, J.; Lalwani, C. The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy 2014, 64, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, G.; Lin, K.-C.; Qi, G.y.; Li, K.X. The effectiveness of the New Inspection Regime for Port State Control: Application of the Tokyo MoU. Mar. Policy 2020, 115, 103857. [Google Scholar] [CrossRef]
- Donateo, A.; Gregoris, E.; Gambaro, A.; Merico, E.; Giua, R.; Nocioni, A.Y.; Contini, D. Contribution of harbor activities and ship traffic to PM2.5, particle number concentrations and PAHs in a port city of the Mediterranean Sea (Italy). Environ. Sci. Pollut. Res. 2014, 21, 9415–9429. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Dai, H.; Geng, Y.; Xie, Y.; Masui, T.; Liu, Z.; Qian, Y. Economic Impacts from PM2.5 Pollution-Related Health Effects: A Case Study in Shanghai. Environ. Sci. Technol. 2017, 51, 5035–5042. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Tao, J.; Qian, Z.M.; Ruan, Z.; Xu, Y.; Hang, J.; Xu, X.; Liu, T.; Guo, Y.; Zeng, W.; et al. Shipping pollution emission associated with increased cardiovascular mortality: A time series study in Guangzhou, China. Environ. Pollut. 2018, 241, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.S.; Berger, L.; Skerratt, L.F. Airborne lead dust concentration in Townsville, Queensland is associated with port activity and may contribute to estuarine Sediment contamination. Estuar. Coast. Shelf Sci. 2019, 225, 106257. [Google Scholar] [CrossRef]
- Sorte, S.; Arunachalam, S.; Naess, B.; Seppanen, C.; Rodrigues, V.; Valencia, A.; Borrego, C.; Monteiro, A. Assessment of source contribution to air quality in a urban area close to a harbor: Case-study in Porto, Portugal. Sci. Total Environ. 2019, 662, 347–360. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Charabi, Y.; Osman, S.; Yetilmezsoy, K.; Osman, I.I. Prediction of optimum sampling rates of air quality monitoring stations using hierarchical fuzzy logic control system. Atmos. Pollut. 2019, 10, 1931–1943. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Handakas, E.J.; Kermenidou, M.; Zarkadas, I.; Gotti, A.; Charisiadis, P.; Makris, K.; Manousakas, M.; Eleftheriadis, K.; Karakitsios, S.P. Monitoring of air pollution levels related to Charilaos Trikoupis Bridge. Sci. Total Environ. 2017, 609, 1451–1463. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.J.; Andrade, M.d.F.; De Miranda, R.M. Heavy truck restrictions and air quality implications in São Paulo, Brazil. J. Environ. Manag. 2017, 202 Pt 1, 55–68. [Google Scholar] [CrossRef]
(Kg/Year) | 2019 | 2020 | p |
---|---|---|---|
NOX | 568 (304–937) | 524 (264–908) | 0.0016 |
CO | 44 (23–71) | 39 (20–67) | 0.0006 |
NMHC | 15 (8–25) | 14 (7–25) | 0.0018 |
SO2 | 70 (21–261) | 58 (19–199) | 0.0002 |
TSP | 18 (9–29) | 15.5 (8–27) | 0.0003 |
PM10 | 15(7–24) | 12.7 (6–22) | 0.0003 |
PM2.5 | 14 (7–22) | 12 (6–21) | 0.0003 |
CO2 | 31,177 | 29,003 | 0.0014 |
(16,786–51,628) | (14,606–50,176) | ||
CH4 | 0.29 (0.16–0.49) | 0.27 (0.13–0.47) | 0.0014 |
(kg/Year) | Spring | Summer | Autumn | Winter | p |
---|---|---|---|---|---|
NOx | 576 (328–878) | 537 (273–902) | 637 (287–1161) | 557 (326–864) | 0.056 |
CO | 44 (26–67) | 41(20–65) * | 48 (21–85.8) * | 43 (24–66) | 0.039 |
NMHC | 15 (9–24) | 15 (7–24) | 17 (8–31) | 15 (9–24) | 0.062 |
SO2 | 74 (22–264) | 63 (20–244) | 75 (23–296) | 69 (21–258) | 0.258 |
TSP | 18 (10–28) | 17 (8–27) * | 19 (9–34) * | 18 (10–27) | 0.031 |
PM10 | 15 (9–23) | 14 (7–22) * | 16 (7–28) * | 15 (8–22) | 0.031 |
PM2.5 | 14 (8–21) | 13(6–21) * | 15 (7–26) * | 14 (7–20.8) | 0.029 |
CO2 | 31,777 | 29,832 | 35,335 | 30,783 | |
(18,221–48,358) | (14,883–49,290) | (15,758–63,490) | (17,779–47,188) | 0.054 | |
CH4 | 0.29 (0.17–0.46) | 0.28 (0.14–0.47) | 0.33 (0.15–0.6) | 0.290 (0.167–0.445) | 0.054 |
(kg/Year) | Spring | Summer | Autumn | Winter | p |
---|---|---|---|---|---|
NOx | 507 (244–832) * | 485.9 (255.8–858.5) | 571 (306–1027) * | 524 (255–921) | 0.016 |
CO | 37 (19–61) * | 36.6 (20–62.8) | 42 (23–74.6) * | 39 (20–67) | 0.016 |
NMHC | 13.5 (6.6–22.6) * | 13 (6.7–23) | 15.7 (8–27) * | 14 (7–25) | 0.016 |
SO2 | 45 (18–158.5) * | 63 (21.5–194.8) | 57 (19–193) | 63 (19–228) * | 0.028 |
TSP | 14 (7–25) * | 15 (8–26) | 16 (8.9–29.6) * | 15.7 (8–28) | 0.016 |
PM10 | 12 (5.8–20) * | 12.5 (6.6–21) | 13 (7–24) * | 13 (6–23) | 0.016 |
PM2.5 | 11 (5–19) * | 11.7 (6–20) | 12 (6.8–22.5) * | 12 (6–22) | 0.016 |
CO2 | 28,196 | 26,776 | 31,470 | 29,031 | 0.016 |
(13,423–45,722) * | (14,035–47,025) | (16,867–56,303) * | (14,131–50,517) | ||
CH4 | 0.26 (0.126–0.4) * | 0.25 (0.13–0.4) | 0.297 (0.16–0.5) * | 0.27 (0.13–0.47) | 0.016 |
SO2 (ppb) | PM2.5 (µg m−3) | |
---|---|---|
Maximum Concentration | 4 | 60.3 |
Average Concentration | 0.6 | 16.4 |
Standard Deviation | 0.4 | 10.9 |
Median | 0.4 | 13.2 |
Port | Reference | Year of Study | Pollutant T Y−1 |
---|---|---|---|
Korea | Song and Shon (2014) | 2006, 2008 and 2009 | NOX = 11,700 |
CO2 = 560,000 | |||
PM = 1200 | |||
SO2 = 9600 | |||
COV = 374 | |||
Western Gulf of Finland | Wahlström, et al. (2006) | 2006 | NOX = 40,326 |
PM = 1049 | |||
SO2 = 13,456 | |||
Candarli Gulf, Turkey | Deniz, et al., 2010 | 2007 | NOX = 632 |
CO2 = 33,849 | |||
PM = 57 | |||
SO2 = 574 | |||
Port of Oakland, USA | Environ International Corporation (EIC) 2013 | 2012 | NOX = 2591 |
CO2 = 133,005 | |||
PM = 67 | |||
SO2 = 289 | |||
The Port of Oslo, Norway | Lopez-Aparicio, et al. (2017) | 2013 | NOX = 759 |
CO2 = 56,289 | |||
PM = 18 | |||
SO2 = 260 | |||
Port of las Palmas, Spain | Tichavska and Tovar (2015) | 2011 | NOX = 4237 |
CO2 = 208,697 | |||
PM = 338 | |||
SO2 = 1420 | |||
Qingdao | Sun, et al. (2018) | 2016 | NOX = 30,031.5 |
CO2 = 2,347,879 | |||
PM = 1747.14 | |||
SO2 = 21,711.32 | |||
Port of Piraeus, Greece | Progiou, et al. (2021) | 2018 | NOX = 218.73 |
PM10 = 15.09 | |||
SO2 = 81.99 | |||
Veracruz, Mexico | THIS STUDY | 2019 2020 | NOX = 3789 CO2 = 199,900 PM = 614 SO2 = 2869 NOX = 3514 CO2 = 185,383 PM = 570 SO2 = 2662.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Rivera, A.I.; Mugica-Álvarez, V.; Sosa Echeverría, R.; Sánchez Álvarez, P.; Magaña Rueda, V.; Vázquez Cruz, G.; Retama, A. Air Quality and Atmospheric Emissions from the Operation of the Main Mexican Port in the Gulf of Mexico from 2019 to 2020. J. Mar. Sci. Eng. 2023, 11, 265. https://doi.org/10.3390/jmse11020265
González Rivera AI, Mugica-Álvarez V, Sosa Echeverría R, Sánchez Álvarez P, Magaña Rueda V, Vázquez Cruz G, Retama A. Air Quality and Atmospheric Emissions from the Operation of the Main Mexican Port in the Gulf of Mexico from 2019 to 2020. Journal of Marine Science and Engineering. 2023; 11(2):265. https://doi.org/10.3390/jmse11020265
Chicago/Turabian StyleGonzález Rivera, Ana Isabel, Violeta Mugica-Álvarez, Rodolfo Sosa Echeverría, Pablo Sánchez Álvarez, Víctor Magaña Rueda, Gustavo Vázquez Cruz, and Armando Retama. 2023. "Air Quality and Atmospheric Emissions from the Operation of the Main Mexican Port in the Gulf of Mexico from 2019 to 2020" Journal of Marine Science and Engineering 11, no. 2: 265. https://doi.org/10.3390/jmse11020265
APA StyleGonzález Rivera, A. I., Mugica-Álvarez, V., Sosa Echeverría, R., Sánchez Álvarez, P., Magaña Rueda, V., Vázquez Cruz, G., & Retama, A. (2023). Air Quality and Atmospheric Emissions from the Operation of the Main Mexican Port in the Gulf of Mexico from 2019 to 2020. Journal of Marine Science and Engineering, 11(2), 265. https://doi.org/10.3390/jmse11020265