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Abstract: Exhaust emissions from vessels have increasingly attracted attention in the continuously
growing marine transport world trade market. The International Maritime Organization (IMO) has
introduced a number of measures designed to reduce exhaust emissions from global shipping. As one
of the busiest ports in the world, Qingdao port has been studied to propose possible support to
the development of efficient emission reduction. In this study, a large amount data of emissions
inventory in Qingdao port was used to predict its annual exhaust emissions, and hence, to help
understand maritime pollution in Qingdao port. Bigdata analysis methodology was employed to
perform accurate predictions on vessel emissions. The analysis results show that the emissions were
dominated by container ships, oil tankers, and bulk cargo ships. The comparison between Qingdao
port and other ports in emission control areas demonstrates the necessity of control measures for
exhaust emissions. The adoption of shore power and efficient cargo handling seems to be a potential
solution to reduce exhaust emissions. The findings of this study are meaningful for maritime safety
administration to understand the current emission situation in Qingdao port, propose corresponding
control measures, and perform pollution prevention.
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1. Introduction

Although shipping has proven to be the most energy efficient mode for mass transport,
emissions from ship engines are harmful to the environment at both regional and global scales [1,2].
The International Maritime Organization (IMO) has introduced a number of measures designed to
reduce exhaust emissions from global shipping [3]. It is therefore crucial to control and reduce the
exhaust emissions from vessels [4].

Quantifying exhaust emissions from marine vessels is a critical step to understand the source
and scale of marine pollution [5]. It is also the base to predict future emissions and develop pollution
improvement opportunities [4]. Previous studies that estimate emissions from maritime industry
can be clarified as international and regional levels [6,7], and the exhaust emissions from ships
in maritime transport are estimated by two methodologies, namely, activity-based and fuel-based
methods. For fuel-based method, prior to input usage data, the fuel-sale figure is individually
introduced by different countries in the emission inventory prediction. The activity-based emission
prediction method aims to calculate the emissions from the fleet or various groups of marine vessels
operating around ports and coast-lines for a particular area, which involve sailing statistics and
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technical data for regional ships and national sea transport, and the establishment of new specific fuel
consumption (SFC) figures and emission factors for ship engines in general.

Currently, the activity-based method has been applied for emission prediction in vessels [8].
Jalkanen et al. [9] computed the exhaust emissions of marine traffic in the Baltic Sea area based on the
relationship of the instantaneous speed to the design speed, and the detailed technical information of
the engines of the ships. An in-port ship activity-based methodology was applied by Tzannatos [10]
for maneuvering and berthing of coastal passenger ships and cruise ships calling at the passenger
port of Piraeus (Greece), in order to estimate the emission of the main ship exhaust pollutants (NOX,
SO2, and PM2.5) over a twelve-month period in 2008 and 2009. Shipping emissions in Candarli Gulf,
Turkey, were calculated based on the energy consumptions of ships for every different stage which
was called operation modes (cruising, maneuvering and hotelling), and detailed real-time activity data
were used for calculations of shipping emissions in this study [11]. To estimate the exhaust emission
from ocean-going vessels in Hong Kong, Yau et al. [12] collected complete data sets of ship activities,
including arrival, departure, and activities during shifts between berths within the Hong Kong territory.
The operational modes, including cruising, slow cruising in reduced speed zones, maneuvering and
hotelling, were categorized based on the vessel speeds. Another Automatic Identification System (AIS)
based emission inventory in Tianjin Port using a bottom-up approach was developed in 2016 [13].
The inter-monthly emission variations and the uncertainties in the estimation were also investigated.
Similar activity-based methods were adopted in the ship emission estimation study for the port of
Incheon [14] and Thessaloniki [15].

Qingdao port is the seventh largest port in the world. It consists of Dagang, Huangdao, Qianwan,
and Dongjiakou port areas. In 2016, the port completed cargo throughput of 500 million tons.
The subsequent pollution problems rocks headlines frequently, especially when other air pollution
sources, including electric power plant and motor vehicles, are strictly restricted in the seashore
Qingdao city. Qingdao has joined the C40 Cities Climate Leadership Group, affirming the commitment
of the city to tackling climate change. It could be estimated that the vessel emission may account for a
large percentage of the total air pollution in Qingdao. However, relevant studies that aim to predict
the vessel emission inventory in Qingdao port have not been found yet. It is worth investigating the
exhaust emission calculation in Qingdao port to provide solid support to efficient energy saving and
emission reduction.

To address the challenge in emission control and environment protection, a new prediction model
for vessel emission inventory of Qingdao port was developed using bigdata analysis in this paper.
The link between shipping activities and air pollution emission in Qingdao port were examined, and
an emission inventory that takes into account the different types of ships under various operation
modes was developed. Furthermore, a quantitative comparison was performed between Chinese
emission control area ports and Qingdao port. Finally, the characteristics of the emissions in Qingdao
port were analyzed.

The contribution of this study is that, for the first time, a bigdata analysis-based methodology
is proposed for vessel emission prediction in Qingdao port. The paper is organized as follows:
Section 2 introduces the Qingdao port and Section 3 presents the new methodology for vessel emission
prediction. The analysis results are discussed in Section 4. Section 5 contains the conclusions of
this paper.

2. Introduction of Qingdao Port

Qingdao port commenced operations in 1892. Located between the Bohai Rim port region and
the Yangtze River Delta port region in China, Qingdao Port is one of the most comprehensive and
busiest ports in the world. It ranks at seventh over the world and has become an important hub for
international trade and transportation in the West Pacific.

Qingdao port handles a large variety of cargo, including containers, metal ore, coal, petroleum,
grains, steel, cars, liquid bulks, dry bulks, and general cargos. Leveraging natural deep-water capacity
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and industry-leading facilities and equipment, Qingdao port can accommodate the world’s largest
container vessels, iron ore vessels, and oil tankers. The waterway of Qingdao port is shown in Figure 1.
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3. Bigdata Analysis-Based Methodology

As mentioned in the Introduction section, the annual amount of throughput in the Qingdao port
reached up to 500 million tons in 2016, involving 124,880 ships. The data explosion in the stored
AIS data poses great difficulty in predicting the vessel emission. Fortunately, the bigdata analysis
technology is able to efficiently process huge amounts of datasets [16,17]. The bigdata analysis-based
method involves the application of emission factors to a particular ship activity, where an emission
factor is a representative value that attempts to relate the emitted quantity with the operational status of
the ship’s engines during that activity. The ship activity profile is a breakdown of a ship’s movements
into five modes of operation (i.e., cruising, preparing, decelerating, maneuvering, and hotelling).

3.1. The Proposed Emission Prediction Model

As mentioned before, the exhaust emission amounts generated from vessels can be calculated
based on the total amount of bunker fuels during maritime transport, i.e., the shipping activity-based
approach. The estimation methodology of ship emissions in the present study is developed using
bigdata analysis, which is based on the analysis on a huge amounts of traffic statistics in Qingdao port.
The flowchart of the proposed method is shown in Figure 2.
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As shown in Figure 2, the operational modes of the vessels in Qingdao port can be categorized
into five classes: cruising, preparing, decelerating, maneuvering, and hotelling. The main source of the
vessel emissions is from main engine (ME) and generator (auxiliary engine, AE). Neglect the influence
of the boiler [12], the emission from vessels in a port can be calculated as

Ek = ∑
i
(Eik(ME) + Eik(AE)) (1)

Eik(ME) =
5

∑
j=1

(Pi(ME) · LFij(ME) · Tij(ME) · EFijk(ME) · 10−6) (2)

Eik(AE) =
5

∑
j=1

(nij(AE) · Pi(AE) · LFij(AE) · Tij(AE) · EFijk(AE) · 10−6) (3)

where, Ek is the emission of pollutant specie k; ME denotes main engine and AE denotes auxiliary
engine; P is the rated power; LF is the load factor; T is the operational time; EF is the emission factor;
i is the ship number; and j is the operation mode.

3.2. Traffic Statistics

According to the 2016 traffic statistics in Qingdao port, the number and average deadweight
tonnage (DWT) of cargo ships in different classes (gross tonnage, (GT)) according to vessel type are
shown in Table 1. In addition, Tables 2 and 3 provide the traffic statistics of tugboats and passenger
ships, which are counted based on engine power (kW) and passenger capacity, respectively. Thus,
the parameters in Equations (1)–(3) can be determined using bigdata analysis using these traffic
statistics in Tables 1–3.
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Table 1. Traffic statistics of cargo ships in Qingdao port, 2016.

Type Number of Ships under Specific DWT (t)

<499 500–999 1000–2999 3000–9999 10,000–49,999 >50,000

Oil tanker
Number 1421 4 3059 1158 398 805
DWT/t 792 1141 3286 7940 42,573 238,393

Liquefied gas carrier Number NA NA 38 80 2 61
DWT/t NA NA 2555 4670 16,988 89,510

Bulk chemical carrier
Number 50 13 482 722 178 16
DWT/t 938 1519 3251 7657 45,519 96,007

Bulk cargo ship Number 26 NA 1571 1440 3599 1404
DWT/t 952 NA 4561 11,976 44,004 314,271

Container ship Number NA 1572 958 4140 5416 4515
DWT/t NA 1122 2591 10,635 33,629 108,619

Ro-ro ship Number NA NA NA 4 14 80
DWT/t NA NA NA 13,237 12,557 21,567

Other cargo ship Number 738 40 4280 3146 1289 7
DWT/t 735 944 4346 7618 29,891 207,254

Table 2. Traffic statistics of tugboat in Qingdao port, 2016.

Average Engine Power (KW) 3418 4773 5325 10,915

Number 18,523 77 1839 8

Table 3. Traffic statistics of passenger ships in Qingdao port, 2016.

Passenger Capacity (Person) <19 20–29 30–49 50–59 >100

Number 4 8 54 60,035 1777

3.3. Parameter Design

(a) Engine parameter design. More than 98% of sea going ships are equipped with diesel engines
as the main power sources [18]. The rated power and design voyage speed are key parameters
in the proposed estimation method. Although neither of these two parameters are recorded in
AIS information, both of them have close relationships with DWT. Because DWT information
is provided by AIS, it is possible to estimate the rated power and design voyage speed through
their relationship with DWT. During the building process of a specific ship type, an empirical
relationship between the rated power, design voyage speed, and DWT can be obtained based on
the basic dimensionalities of the ship. As a result, the empirical relationships of different ship
types can be utilized in the proposed model to calculate the estimated rated power and design
speed. Xing [19] analyzed the statistics of diesel engine manufactory MAN B&W, the relationship
between ME rated power (kW), design voyage speed (Vd/kn), and DWT is shown in Table 4.
The liquefied gas and bulk chemical carriers would follow the relationship as oil tanker, while the
ro-ro ships would follow the relationship as other cargo ship.

Table 4. The relationship between the rated power, design speed, and DWT.

Ship Type DWT PME/kW Vd/kn

Oil tanker
<6 × 104 PME = 0.709·DWT − 1963 Vd = 2.355·DWT0.214

>6 × 104 PME = 0.328·DWT + 27596 25

Bulk cargo ship <2 × 104
PME = 23.983·DWT0.554 Vd = 6.157·DWT0.092

>2 × 104 15.5

Container ship <3 × 104
PME = 8.830·DWT0.630 Vd = 4.406·DWT0.119

>3 × 104 14.5

Other cargo ship NA PME = 97.908·DWT0.437 Vd = 3.719·DWT0.150
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Furthermore, the relationship between ME rated power, design voyage speed, and passenger
capacity for passenger ships can only be determined according to the ship configurations. Currently,
an empirical formula was used to establish the relationship between these parameters by CCS (China
Classification Society), BV (Bureau Veritas), and LR (Lloyd’s Register of Shipping) according to the
ship types. Hence, it is very important to determine the types of ships of interest. In order to cluster a
huge amount ships into different type groups, the k-Nearest Neighbor clustering was adopted in the
bigdata analysis. Then, the LR’s empirical formula [19] was employed to process the grouped ships.
It was found that the AE rated power was 24% of ME rated power. Hence, the relationship between
AE rated power, design voyage speed, and DWT or passenger capacity can be determined accordingly.

(b) Load factor. The load factor of ME was estimated based on the Propeller Law by Equation (4) [18].

LFME = 0.9·
(

Va

Vd

)3
(4)

where, Va is the actual speed and Vd is the design speed.

For AE, the quantity in use (n) and their load factors (LFAE) for different types of ships under
different operation modes are shown in Table 5 [20,21].

Table 5. AE load factors under different operating conditions.

Type Cruising Preparing Decelerating Maneuvering Hotelling

n LFAE n LFAE n LFAE n LFAE n LFAE

Oil tanker 1 0.6 2 0.4 2 0.4 2 0.7 2 0.7
Bulk cargo ship 1 0.6 2 0.4 2 0.4 2 0.7 1 0.4
Container ship 1 0.6 2 0.4 2 0.4 2 0.7 1 0.4

Ro-ro/passenger 2 0.8 3 0.6 3 0.6 3 0.8 2 0.7
Other cargo ship 1 0.6 2 0.4 2 0.4 2 0.7 1 0.4

(c) Operation time. The operation time is the sailing durations of the ships in different modes.
The distances traveled by ships in different modes were defined according to statistics. The actual
speed of the ships under a specific operation mode is obtained by averaging the vessel speeds
from the route data. The actual speed (Va/kn) and operation time (T/h) in different operation
modes are shown in Table 6. The definition of different voyage modes are mainly based on the
analysis of AIS data. Currently, when ships enter Qingdao port, they cruise at variable speeds
from the open sea area to the berths. The emissions will increase with the increase of speed and
with the decrease of load when the engines run at a low load range. The hotelling time is relevant
with the port berthing capacity and working efficiency.

(d) Emission factor. In previous studies, the emission factors were assumed as fixed values under
different activity modes [13]. This is not realistic in practical application. In order to solve this
problem, a more realistic method is developed in this study. Firstly, considering different engine
types, different corresponding emission factors are applied. It is assumed that the ship gross
tonnage less than 10,000 would employ four-stroke diesel engine as ME, others would employ
two-stroke ones. In addition, all of the AE would adopt four-stroke ones. Secondly, the fitting
results between emission factors and load factors for both four-stroke engines and two-stroke
ones [19] were adopted. As a result, a full range of load factors was considered to produce more
accurate emission factors than fixed values.

The ratio of CO2 emission factor to the specific fuel consumption (SFOC) of ME follows the fitting
Equations (5) and (6). This equation is derived from the statistics based on the emission testing reports
of 54 marine diesel engines from CCS, BV, and LR. All the main engines are tested under four rated
load: 25%, 50%, 75%, and 100%, the auxiliary engines are tested under five rated load: 10%, 25%, 50%,



Symmetry 2018, 10, 452 7 of 11

75%, and 100%. The fitting analysis has been conducted based on these testing results, and the fitting
formula is shown in Equations (5) and (6).

EFCO2(ME)/SFOC = a·LF2 − b·LF + c (5)

where a, b, and c are fitting coefficients.
The other emissions for both ME and AE follow the fitting Equation (6).

EFrk = a·LF−b (6)

The fitting coefficients can refer to Table 7. According to statistics, the fuel sulfur content is
1.5% [22], and it is believed that 97.753% of the S element in fuel would change to SO2, and the left
2.247% would change to sulfate, which is the main ingredient of PM2.5 [20].

Table 6. The actual speed and operation time in different operation modes.

Type Cruising Preparing Decelerating Maneuvering Hotelling

Va T Va T Va T Va T T

Oil tanker Vd 20/Vd Vd 12/Vd 8 1.5 4 1.0 24
Bulk cargo ship Vd 20/Vd Vd 12/Vd 6 2.0 4 1.0 32
Container ship Vd 20/Vd Vd 12/Vd 6 2.0 4 1.0 32

Ro-ro/passenger Vd 20/Vd Vd 12/Vd 8 1.5 4 0.8 6
Other cargo ship Vd 20/Vd Vd 12/Vd 6 2.0 4 1.0 32

Tugboat NA NA NA NA NA NA Vd 1.0 NA

Va- actual speed, Vd- design speed, T- operation time.

Table 7. The fitting coefficients for emission factors.

Item. Coefficient
ME AE

Two Stroke Four Stroke Four Stroke

EFNOx
a 10.738 7.271 7.365
b 0.187 0.351 0.108

EFCO
a 0.359 0.391 0.347
b 1.103 0.555 0.861

EFHC
a 0.200 0.274 0.256
b 0.201 0.169 0.639

EFCO2

a 140.284 221.780 611.927
b 195.459 337.642 0.217
c 599.301 767.041 NA

SFOC
a 45.752 67.844 194.571
b 64.785 130.201 0.222
c 190.695 242.725 NA

4. Result and Discussion

Within the framework of the bigdata analysis-based methodology, the emission inventory
calculations for Qingdao Port in 2016 were performed. The results of the calculations are presented
and the emissions proportions for different ship types are discussed.

4.1. Analysis Results

Table 8 shows the predicted ship emissions inventory in 2016. This is the sum of the emissions in
all operation modes. As can be seen in Table 8, the amounts of the ship emissions of NOX, CO, HC,
CO2, SO2, and PM2.5 are 30,031.5, 2735.3, 1255.7, 2,347,879.2, 21,711.3, and 1747.1 tons, respectively.
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Table 8. Ship emission inventory in Qingdao port, 2016 (ton).

NOX CO HC CO2 SO2 PM2.5

Oil tanker 3751.7 256.0 147.3 304,455.5 2824.3 227.3
Liquefied gas carrier 122.0 8.4 4.8 9828.3 91.3 7.3
Bulk chemical carrier 591.9 39.0 23.8 49,119.0 453.6 36.5

Bulk cargo ship 3878.0 352.7 159.6 290,243.6 2698.9 217.2
Container ship 16,672.5 1720.7 707.7 1,275,197.5 11,880.8 956.0

Ro-ro ship 22.2 2.5 0.7 1459.9 13.6 1.1
Other cargo ship 2308.0 193.9 106.6 192,812.5 1755.1 141.2

Tugboat 581.9 33.1 22.2 49,797.4 14,258.0 418.1
Passenger ship 2103.3 128.9 83.0 174,965.5 1575.6 126.8

Sum 30,031.5 2735.3 1255.7 2,347,879.2 21,711.3 1747.1

The NOX emission from ships is chosen to discuss the emission share from different type of ships,
as shown in Figure 3. Among different ship types, the containers emitted the highest amount of NOX,
followed by bulk cargo ships and oil tankers. These three ship types produced more than 80% of the
total NOx emissions. This result is consistent with the ship traffic statistics in Table 1.
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The Chinese government has announced specific policies to reduce harmful emissions from
shipping. Three emission control areas (ECAs) are being established in the Zhujiang (Pearl River),
the Yangtze River, and the Bohai Sea [23]. Qingdao port does not belong to any of these three ECAs.
The emission inventory was compared between Qingdao ports and other ports in the three ECAs
in Table 9.

Table 9. A comparison of ship emissions of Qingdao port and other ports in the three emission control
areas (ECA).

Port NOX CO HC CO2 SO2 PM2.5

Qingdao (2016) 30,032 2735 1256 2,347,879 21,711 1747
Shanghai (2010) [24] 57,300 4900 2100 2,885,500 35,400 3700

Tianjin (2014) [13] 41,300 3570 1720 NA 29,300 3720
Shenzhen (2010) [25] 23,300 2200 1100 NA 13,600 1700

It can be seen in Table 9 that the calculated emissions in Qingdao port is less than the other three
ports. This is probably due to the continuous increase of ships in these three ports. Thanks to the
regulation of the sulfur content of fuel oil, the emissions of SO2 and PM2.5 in ECAs are expected to
decrease below the current level. Especially, the restriction on the maximum sulfur content, 0.5%of
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marine fuels, starting from 1 January 2019 in ECAs, will lead to substantial reduction of SO2 and PM2.5

emissions in the near future. It is meaningful for Qingdao port to establish similar control measures.
Figure 4 shows the exhaust emissions of different ship types. Emissions from vessels in Qingdao

port are dominated by container ships, oil tankers, and bulk cargo ships. Significant emissions
from these ships are associated with large total ship capacity and high engine power. The emission
characteristics in terms of ship types are slightly different from the other region ports with a higher
percentage of container ships. This result is consistent with the factor that Qingdao port is ranked as
one top international container ports.
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4.2. Uncertainty Analysis

Previous qualitative studies indicated that the uncertainties of ship emissions were mainly
introduced by time-in-mode, load factor, and emission factor [26,27]. In this study, the uncertainties of
the emission inventory from vessel in Qingdao port in 2016 were mainly from the following aspects.

(1) Traffic statistics. The traffic statistics of 2016 from Qingdao port authorities could only include
merchant ships, while the naval vessels and fishing boats were excluded. This would bring the
main uncertainty.

(2) Rated power. The rated power estimation of ships was based on the study of MAN diesel engine
relationship. The estimation results would be influenced by the representation and volume of
sample data.

(3) Load factor and emission factor. Both of the factors in this work were referenced to relevant
research results at home and abroad. The difference of ship types, activity characteristics, and fuel
types in different studies would incur uncertainty.

5. Conclusions

As one of the busiest container ports of China, Qingdao port produces significant emissions
inventory. A bigdata-based method is proposed to predict the exhaust emissions in Qingdao port.
Historical data was used to learn and analyze the parameters of the prediction model. The research
results demonstrate that the amounts of the ship emissions of NOX, CO, HC, CO2, SO2, and PM2.5

are 30,031.5, 2735.3, 1255.7, 2,347,879.2, 21,711.3, and 1747.1 tons, respectively. And the emissions are
dominated by container ships, oil tankers, and bulk cargo ships. The comparison between Qingdao
port and three ports in ECAs indicates the necessity to establish effective control measures in Qingdao
port. Besides sulfur content control, the adoption of shore power and efficient cargo handling seems
to be a feasible strategy to reduce emissions and protect environmental pollution in Qingdao port.
Furthermore, because in the present uncertainty analysis, only the feasibility of the proposed method
is evaluated, improving the reliability of AIS data and the accuracy of emission factors is our further
research plan. In addition, the influence of different policy and technical methods aiming at mitigating
marine emissions will be investigated using this newly proposed mode to provide theory basis for
maritime management. It is also interesting to use other Machine Learning algorithms and compare
the results.
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