Spatial–Temporal Variations in Regional Sea Level Change in the South China Sea over the Altimeter Era
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adopted Datasets
2.2. Local Mean Decomposition Method
2.3. Periodicity Analysis Method
2.4. Empirical Orthogonal Function (EOF) Analysis Method
3. Results and Analysis
3.1. Spatial Analysis of Sea Level Change in South China Sea
3.1.1. The Seasonal Spatial Patterns of Sea Level Change in the South China Sea
3.1.2. The Monthly Spatial Patterns of Sea Level Change in the South China Sea
3.2. A Temporal Analysis of Sea Level Change in the South China Sea
3.2.1. Monthly Mean Sea Level Change in the South China Sea
3.2.2. Seasonal Mean Sea Level Change in the South China Sea
3.3. Modal Analysis of Mean Sea Level Change in the South China Sea
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, S. Global Sea Level Change. In Application of Satellite Gravimetry to Mass Transports on a Global Scale and the Tibetan Plateau; Springer Theses; Springer: Singapore, 2019. [Google Scholar]
- Cazenave, A.; Dieng, H.-B.; Meyssignac, B.; von Schuckmann, K.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Chang. 2014, 4, 358–361. [Google Scholar] [CrossRef]
- Sun, J.; Oey, L.; Xu, F.-H.; Lin, Y.-C. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades. Sci. Rep. 2017, 7, 7418. [Google Scholar] [CrossRef]
- Chen, R.; Wen, Z.; Lu, R. Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Clim. Dyn. 2018, 51, 2113–2126. [Google Scholar] [CrossRef]
- Pham, D.T.; Switzer, A.D.; Huerta, G.; Meltzner, A.J.; Nguyen, H.M.; Hill, E.M. Spatiotemporal variations of extreme sea levels around the South China Sea: Assessing the influence of tropical cyclones, monsoons and major climate modes. Nat. Hazards 2019, 98, 969–1001. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Wang, A.; Feng, J.; Fan, W.; Liu, Q.; Xu, Y.; Zhang, Z. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea. Ocean. Dyn. 2018, 68, 485–495. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Gao, Z.; Fan, W.; Liu, S.; Li, J. Characteristics and possible causes of the seasonal sea level anomaly along the South China Sea coast. Acta Oceanol. Sin. 2017, 36, 9–16. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, R. Individual and combined impacts of ENSO and East Asian winter monsoon on the South China Sea cold tongue intensity. Clim. Dyn. 2021, 56, 3995–4012. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Z.; Xia, C.; Guo, B. Seasonal characteristics and forcing mechanisms of the surface Kuroshio branch intrusion into the South China Sea. Acta Oceanol. Sin. 2019, 38, 13–21. [Google Scholar] [CrossRef]
- Agha Karimi, A. Internal variability role on estimating sea-level acceleration in Fremantle tide gauge station. Front. Earth Sci. 2021, 9, 474. [Google Scholar] [CrossRef]
- Kenigson, J.; Han, W. Detecting and understanding the accelerated sea-level rise along the east coast of the United States during recent decades. J. Geophys. Res. Ocean. 2014, 119, 8749–8766. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Zhou, D.; Li, J.; Zhang, W. Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Adv. Space Res. 2021, 68, 523–533. [Google Scholar] [CrossRef]
- Tang, L.; Chen, M. Temporal and spatial variation characteristics of sea-level in the South China Sea in recent 30 years. J. Zhejiang Norm. Univ. (Nat. Sci.) 2022, 45, 446–454. [Google Scholar]
- Yu, R.; Xu, H.; Liu, B. Analysis of Spatial and Temporal Variation of sea-level in South China Sea Based on Satellite Altimeter Data. J. Ocean. Technol. 2021, 40, 102–433. [Google Scholar]
- Chi, Q. Optimization and Application of Endpoint Effects in Local Mean Decomposition; East China University of Technology: Nanchang, China, 2017. [Google Scholar]
- Zhou, L.T.; Tam, C.Y.; Zhou, W.; Chan, J.C. Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv. Atmos. Sci. 2010, 27, 832–844. [Google Scholar] [CrossRef]
- Rong, Z.; Liu, Y.; Zong, H.; Cheng, Y. Interannual sea level variability in the South China Sea and its response to ENSO. Glob. Planet. Chang. 2007, 55, 257–272. [Google Scholar] [CrossRef]
- Wang, C.; Wang, W.; Wang, D.; Wang, Q. Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef]
- Piton, V.; Delcroix, T. Seasonal and interannual (ENSO) climate variabilities and trends in the South China Sea over the last three decades. Ocean. Sci. Discuss. 2018. [Google Scholar] [CrossRef]
- Chao, S.Y.; Shaw, P.T.; Wu, S.Y. El Niño modulation of the South China sea circulation. Prog. Oceanogr. 1996, 38, 51–93. [Google Scholar] [CrossRef]
- Wu, R.; Huang, G.; Du, Z.; Hu, K. Cross-season relation of the South China Sea precipitation variability between winter and summer. Clim. Dyn. 2014, 43, 193–207. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Lond. R. Soc. Lond. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Saramul, S.; Ezer, T. Spatial variations of sea level along the coast of Thailand: Impacts of extreme land subsidence, earthquakes and the seasonal monsoon. Glob. Planet. Chang. 2014, 122, 70–81. [Google Scholar] [CrossRef]
- Veltcheva, A.; Soares, C. Nonlinearity of abnormal waves by the Hilbert-Huang Transform method. Ocean. Eng. 2016, 115, 30–38. [Google Scholar] [CrossRef]
- Schlurmann, T. Spectral analysis of nonlinear water waves based on the Hilbert-Huang transformation. J. Offshore Mech. Arct. Eng. 2002, 124, 22–27. [Google Scholar] [CrossRef]
- Smith, J.S. The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2005, 2, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.; Chand, S.; Iqbal, F. Prediction of river inflow of the major tributaries of Indus river basin using hybrids of EEMD and LMD methods. Arab. J. Geosci. 2023, 16, 257. [Google Scholar] [CrossRef]
- An, F.P.; Liu, Z.W. Image Processing Algorithm Based on Bi-dimensional Local Mean Decomposition. J. Math. Imaging Vis. 2019, 61, 1243–1257. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Kisi, O.; da Silva, R.M.; Zounemat-Kermani, M. Wavelet-based variability on streamflow at 40-year timescale in the Black Sea region of Turkey. Arab. J. Geosci. 2018, 11, 169. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Leben, R.R.; Strassburg, M.W.; Nerem, R.S.; Kim, K. Contribution of the Pacific Decadal Oscillation to global mean sea-level trends. Geophys. Res. Lett. 2013, 40, 5171–5175. [Google Scholar] [CrossRef]
- Nerem, R.; Rachlin, K.; Beckley, B. Characterization of global mean sea level variations observed by TOPEX/POSEIDON using empirical orthogonal functions. Surv. Geophys. 1997, 18, 293–302. [Google Scholar] [CrossRef]
- Han, W.; Meehl, G.A.; Stammer, D.; Hu, A.; Hamlington, B.; Kenigson, J.; Palanisamy, H.; Thompson, P. Spatial patterns of sea level variability associated with natural internal climate modes. In Integrative Study of the Mean Sea-Level and Its Components; Springer: Berlin/Heidelberg, Germany, 2017; pp. 221–254. [Google Scholar]
- Zhan, J.G.; Wang, Y.; Xu, H.Z.; Hao, X.G.; Liu, L.T. The Wavelet Analysis of sea level Change in China Sea during 1992~2006. Acta Geod. Cartogr. Sin. 2008, 37, 438–443. [Google Scholar]
- Hung, R.; Gu, L.; Zhou, L.; Wu, S. Impact of the thermal state of the tropical western Pacific on onset date and process of the South China Sea summer monsoon. Adv. Atmos. Sci. 2006, 23, 909–924. [Google Scholar] [CrossRef]
- Han, G.; Huang, W. Low-frequency sea level variability in the South China Sea and its relationship to ENSO. Theor. Appl. Climatol. 2009, 97, 41–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Xue, J.; Zheng, F.; Wu, R.; Ha, K.-J.; Feng, J. The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean dipole development. Clim. Dyn. 2019, 53, 6665–6680. [Google Scholar] [CrossRef]
- Hu, J.; Kawamura, H.; Hong, H.; Qi, Y. A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion. J. Oceanogr. 2000, 56, 607–624. [Google Scholar] [CrossRef]
- Huo, D.; Yang, T. Seismic ambient noise around the South China Sea: Seasonal and spatial variations, and implications for its climate and surface circulation. Mar. Geophys. Res. 2013, 34, 449–459. [Google Scholar] [CrossRef]
- Chen, J.; Wen, Z.; Wu, R.; Chen, Z.; Zhao, P. Interdecadal changes in the relationship between Southern China winter-spring precipitation and ENSO. Clim. Dyn. 2014, 43, 1327–1338. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Wang, B. Interdecadal change of the South China Sea summer monsoon onset. J. Clim. 2012, 25, 3207–3218. [Google Scholar] [CrossRef]
- Fang, G.; Wei, Z.; Fang, Y.; Wang, K.; Choi, B. Mean sea surface heights of the South and East China Seas from ocean circulation model and geodetic leveling. Chin. Sci. Bull. 2002, 47, 326–329. [Google Scholar] [CrossRef]
- Chao, S.Y.; Shaw, P.T.; Wang, J. Wind relaxation as possible cause of the South China Sea Warm Current. J. Oceanogr. 1995, 51, 111–132. [Google Scholar] [CrossRef]
- Jang, H.-Y.; Yeh, S.-W.; Chang, E.-C.; Kim, B.-M. Evidence of the observed change in the atmosphere–ocean interactions over the South China Sea during summer in a regional climate model. Meteorol. Atmos. Phys. 2016, 128, 639–648. [Google Scholar] [CrossRef]
- Ichikawa, K. Remote Sensing of the Kuroshio Current System. In Remote Sensing of the Asian Seas; Barale, V., Gade, M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Zhang, Q.-H.; Fan, H.-M.; Qu, Y.-Y. Kuroshio Intrusion into the South China Sea. J. Hydrodyn. 2006, 18, 702–713. [Google Scholar] [CrossRef]
- Qiu, F.; Pan, A.; Zhang, S.; Cha, J.; Sun, H. Sea surface temperature anomalies in the South China Sea during mature phase of ENSO. Chin. J. Ocean. Limnol. 2016, 34, 577–584. [Google Scholar] [CrossRef]
- Wu, C.-R.; Wang, Y.-L.; Lin, Y.-F.; Chao, S.-Y. IIntrusion of the Kuroshio into the South and East China Seas. Sci. Rep. 2017, 7, 7895. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Feng, J.; Wang, F. ENSO cycle and climate anomaly in China. Chin. J. Ocean. Limnol. 2012, 30, 985–1000. [Google Scholar] [CrossRef]
- Wu, W.; Liu, M.; Yu, S.; Wang, Y. Current Model Analysis of South China Sea Based on Empirical Orthogonal Function (EOF) Decomposition and Prototype Monitoring Data. J. Ocean Univ. China 2019, 18, 305–316. [Google Scholar] [CrossRef]
- Guo, J.; Fang, W.; Fang, G.; Chen, H. Variability of surface circulation in the South China Sea from satellite altimeter data. Chin. Sci. Bull. 2006, 51 (Suppl. 2), 1–8. [Google Scholar] [CrossRef]
- He, X.; Chen, Z.; Lu, Y.; Zhang, W.; Yu, K. Spatio-temporal Variations of Sea Surface Wind in Coral Reef Regions over the South China Sea from 1988 to 2017. Chin. Geogr. Sci. 2021, 31, 522–538. [Google Scholar] [CrossRef]
Season | Trend (mm/a) | Annual Amplitude (mm) | Mean Value (mm) | Maximum Value (mm) | Time of Maximum (year) |
---|---|---|---|---|---|
Spring | 3.70 ± 0.13 | 10.93 ± 0.15 | −48.33 | 79.60 | 2012 |
Summer | 3.66 ± 0.16 | 18.99 ± 0.19 | 47.71 | 130.67 | 2013 |
Autumn | 3.49 ± 0.16 | 17.49 ± 0.08 | 44.66 | 166.62 | 2009 |
Winter | 3.74 ± 0.33 | 18.27 ± 0.27 | 46.33 | 74.08 | 2012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Jiao, Y.; Wang, F.; Zhou, S. Spatial–Temporal Variations in Regional Sea Level Change in the South China Sea over the Altimeter Era. J. Mar. Sci. Eng. 2023, 11, 2360. https://doi.org/10.3390/jmse11122360
Xiong L, Jiao Y, Wang F, Zhou S. Spatial–Temporal Variations in Regional Sea Level Change in the South China Sea over the Altimeter Era. Journal of Marine Science and Engineering. 2023; 11(12):2360. https://doi.org/10.3390/jmse11122360
Chicago/Turabian StyleXiong, Lujie, Yanping Jiao, Fengwei Wang, and Shijian Zhou. 2023. "Spatial–Temporal Variations in Regional Sea Level Change in the South China Sea over the Altimeter Era" Journal of Marine Science and Engineering 11, no. 12: 2360. https://doi.org/10.3390/jmse11122360