Different Source Contributions of Bioactive Trace Metals in Sinking Particles in the Northern South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Processing
2.2. Chemical Analyses
2.3. Trace Metal Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Source Identification
4.2. Different Source Contributions of Bioactive Trace Metals in Sinking Particles
4.3. The Role of Various Carriers in Excess Trace Metal Transportation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sunda, W.G. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean. Front. Microbiol. 2012, 3, 204. [Google Scholar] [CrossRef] [PubMed]
- Morel, F.M.M.; Milligan, A.J.; Saito, M.A. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients. In Treatise on Geochemistry; Turekian, K.K., Holland, H.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 123–150. [Google Scholar]
- Morel, F.M.; Price, N.M. The biogeochemical cycles of trace metals in the oceans. Science 2003, 300, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Fan, D.; Liu, M.; Liao, H.; Tian, Y. Persistent impact of human activities on trace metals in the Yangtze River Estuary and the East China Sea: Evidence from sedimentary records of the last 60 years. Sci. Total Environ. 2019, 654, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ren, J.; Zhang, Z.; Zhu, Z.; John, S. Distribution patterns of dissolved trace metals (Fe, Ni, Cu, Zn, Cd, and Pb) in China marginal seas during the GEOTRACES GP06-CN cruise. Chem. Geol. 2022, 604, 120948. [Google Scholar] [CrossRef]
- Yang, W.; Cao, Z.; Zhang, H.; Lang, Y. A national wide evaluation of heavy metals pollution in surface sediments from different marginal seas along China Mainland. Reg. Stud. Mar. Sci. 2021, 42, 101637. [Google Scholar] [CrossRef]
- Anderson, R.F.; Henderson, G.M. GEOTRACES-A Global Study of the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes. Oceanography 2005, 18, 76–79. [Google Scholar] [CrossRef]
- Anderson, R.F. GEOTRACES: Accelerating Research on the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes. Ann. Rev. Mar. Sci. 2020, 12, 49–85. [Google Scholar] [CrossRef]
- Traill, C.D.; Weis, J.; Wynn-Edwards, C.; Perron, M.M.G.; Chase, Z.; Bowie, A.R. Lithogenic Particle Flux to the Subantarctic Southern Ocean: A Multi-Tracer Estimate Using Sediment Trap Samples. Glob. Biogeochem. Cycles 2022, 36, 9. [Google Scholar] [CrossRef]
- Jickells, T.D.; Deuser, W.G.; Knap, A.H. The sedimentation rates of trace elements in the Sargasso Sea measured by sediment trap. Deep Sea Res. Part I Oceanogr. Res. Pap. 1984, 31, 1169–1178. [Google Scholar] [CrossRef]
- Lamborg, C.H.; Buesseler, K.O.; Lam, P.J. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1564–1577. [Google Scholar] [CrossRef]
- Huang, S.; Conte, M.H. Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea. Geochim. Cosmochim. Acta 2009, 73, 65–90. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Chou, W.-C.; Lin, H.-L.; Sheu, D.D. Trace metal cycling in the deep water of the South China Sea: The composition, sources, and fluxes of sinking particles. Limnol. Oceanogr. 2011, 56, 1225–1243. [Google Scholar] [CrossRef]
- Takano, S.; Liao, W.-H.; Tian, H.-A.; Huang, K.-F.; Ho, T.-Y.; Sohrin, Y. Sources of particulate Ni and Cu in the water column of the northern South China Sea: Evidence from elemental and isotope ratios in aerosols and sinking particles. Mar. Chem. 2020, 219, 103751. [Google Scholar] [CrossRef]
- Liao, W.-H.; Takano, S.; Tian, H.-A.; Chen, H.-Y.; Sohrin, Y.; Ho, T.-Y. Zn elemental and isotopic features in sinking particles of the South China Sea: Implications for its sources and sinks. Geochim. Cosmochim. Acta 2021, 314, 68–84. [Google Scholar] [CrossRef]
- Ho, T.-Y.; You, C.-F.; Chou, W.-C.; Pai, S.-C.; Wen, L.-S.; Sheu, D.D. Cadmium and phosphorus cycling in the water column of the South China Sea: The roles of biotic and abiotic particles. Mar. Chem. 2009, 115, 125–133. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, J.; Li, H.; Sun, L.; Wu, Z.; Wiesner, M.G.; Zheng, H.; Chen, J. Deep Ocean Particle Flux in the Northern South China Sea: Variability on Intra-Seasonal to Seasonal Timescales. Front. Earth Sci. 2020, 8, 74. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Wiesner, M.G.; Eglinton, T.I.; Haghipour, N.; Jian, Z.; Chen, J. Carbon Isotopic Constraints on Basin-Scale Vertical and Lateral Particulate Organic Carbon Dynamics in the Northern South China Sea. J. Geophys. Res. Ocean. 2022, 127, 8. [Google Scholar] [CrossRef]
- Ran, L.; Chen, J.; Wiesner, M.G.; Ling, Z.; Lahajnar, N.; Yang, Z.; Li, H.; Hao, Q.; Wang, K. Variability in the abundance and species composition of diatoms in sinking particles in the northern South China Sea: Results from time-series moored sediment traps. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 122, 15–24. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Liu, Q.; Qian, X.; Chen, X.; Zheng, J.; Yang, T.; Xu, Q.; Yang, T. Temporal Evolution and Regional Properties of Aerosol over the South China Sea. Remote Sens. 2023, 15, 501. [Google Scholar] [CrossRef]
- Lin, I.I.; Chen, J.-P.; Wong, G.T.F.; Huang, C.-W.; Lien, C.-C. Aerosol input to the South China Sea: Results from the MODerate Resolution Imaging Spectro-radiometer, the Quick Scatterometer, and the Measurements of Pollution in the Troposphere Sensor. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 1589–1601. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Wiesner, M.G.; Zheng, L.; Wong, H.K.; Wang, Y.; Chen, W. Fluxes of pariculate matter in the South China Sea. In Particle Flux in the Ocean; Ittekkot, V., Honjo, S., Depetris, P.J., Eds.; John Wiley & Sons: Chichester, UK, 1996; pp. 293–309. [Google Scholar]
- Lahajnar, N.; Wiesner, M.G.; Gaye, B. Fluxes of amino acids and hexosamines to the deep South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 2120–2144. [Google Scholar] [CrossRef]
- Müller, P.J.; Suess, E.; AndréUngerer, C. Amino acids and amino sugars of surface particulate and sediment trap material from waters of the Scotia sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1986, 33, 819–838. [Google Scholar] [CrossRef]
- Honjo, S. Fluxes of particles to the interior of the open oceans. In Particle Flux in the Ocean; Ittekkot, V., Honjo, S., Depetris, P.J., Eds.; John Wiley & Sons: Chichester, UK, 1996; p. 372. [Google Scholar]
- Priyadarshani, W.N.C.; Ran, L.; Wiesner, M.G.; Chen, J.; Ling, Z.; Yu, S.; Ye, Y. Seasonal and interannual variability of coccolithophore flux in the northern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 145, 13–30. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Wong, G.T.F.; Gong, G.-C.; Shiah, F.-K.; Huang, Y.-T.; Kao, S.-J.; Tsai, F.; Lung, S.-C.C.; Lin, F.-J.; Lin, I.I.; et al. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar. Chem. 2010, 120, 116–127. [Google Scholar] [CrossRef]
- Liao, W.-H.; Ho, T.-Y. Particulate Trace Metal Composition and Sources in the Kuroshio Adjacent to the East China Sea: The Importance of Aerosol Deposition. J. Geophys. Res. Ocean. 2018, 123, 6207–6223. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, S. Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
- Conte, M.H.; Carter, A.M.; Koweek, D.A.; Huang, S.; Weber, J.C. The elemental composition of the deep particle flux in the Sargasso Sea. Chem. Geol. 2019, 511, 279–313. [Google Scholar] [CrossRef]
- Pullwer, J.; Waniek, J.J. Particulate trace metal fluxes in the center of an oceanic desert: Northeast Atlantic subtropical gyre. J. Mar. Syst. 2020, 212, 103447. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Chou, W.-C.; Wei, C.-L.; Lin, F.-J.; Wong, G.T.F.; Line, H.-L. Trace metal cycling in the surface water of the South China Sea: Vertical fluxes, composition, and sources. Limnol. Oceanogr. 2010, 55, 1807–1820. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Wen, L.-S.; Chen-Feng, Y.; Lee, D.-C. The Trace-Metal Composition of Size-Fractionated Plankton in the South China Sea: Biotic versus Abiotic Sources. Limnol. Oceanogr. 2007, 52, 1776–1788. [Google Scholar] [CrossRef]
- Blain, S.; Planquette, H.; Obernosterer, I.; Guéneuguès, A. Vertical Flux of Trace Elements Associated With Lithogenic and Biogenic Carrier Phases in the Southern Ocean. Global Biogeochem. Cycles 2022, 36, e2022GB007371. [Google Scholar] [CrossRef]
- Chen, C.-T.; Kandasamy, S. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environ. Geol. 2007, 54, 1333–1346. [Google Scholar] [CrossRef]
- Xu, F.; Tian, X.; Yin, F.; Zhao, Y.; Yin, X. Heavy metals in the surface sediments of the northern portion of the South China Sea shelf: Distribution, contamination, and sources. Environ. Sci. Pollut. Res. Int. 2016, 23, 8940–8950. [Google Scholar] [CrossRef]
- Liao, W.-H.; Yang, S.-C.; Ho, T.-Y. Trace metal composition of size-fractionated plankton in the Western Philippine Sea: The impact of anthropogenic aerosol deposition. Limnol. Oceanogr. 2017, 62, 2243–2259. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, W.; Sun, Y.; Yu, K.; Feng, C.; Han, Y.; Xiao, Y.; Wei, C. Interannual variation and sources identification of heavy metals in seawater near shipping lanes: Evidence from a coral record from the northern South China Sea. Sci. Total Environ. 2022, 854, 158755. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, W.; Feng, C.; Sun, Y.; Han, Y.; Xiao, Y.; Wei, C.; Yu, K. Coral skeletons reveal the impacts of oil pollution on seawater chemistry in the northern South China Sea. Chemosphere 2023, 338, 139632. [Google Scholar] [CrossRef]
- Sun, W.-P.; Han, Z.-B.; Hu, C.-Y.; Pan, J.-M. Source composition and seasonal variation of particulate trace element fluxes in Prydz Bay, East Antarctica. Chemosphere 2016, 147, 318–327. [Google Scholar] [CrossRef]
- Noriki, S.; Ishimori, N.; Harada, K.; Tsunogai, S. Removal of trace metals from seawater during a phytoplankton bloom as studied with sediment traps in Funka Bay, Japan. Mar. Chem. 1985, 17, 75–89. [Google Scholar] [CrossRef]
- Pohl, C.; Löffler, A.; Hennings, U. A sediment trap flux study for trace metals under seasonal aspects in the stratified Baltic Sea (Gotland Basin; 57°19.20′N; 20°03.00′E). Mar. Chem. 2004, 84, 143–160. [Google Scholar] [CrossRef]
- Weber, T.; John, S.; Tagliabue, A.; DeVries, T. Biological uptake and reversible scavenging of zinc in the global ocean. Science 2018, 361, 72. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Hsu, N.C.; Tsay, S.-C.; Lin, N.-H.; Sayer, A.M.; Huang, S.-J.; Lau, W.K.M. Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea? Geophys. Res. Lett. 2012, 39, L05811. [Google Scholar] [CrossRef]
- Yang, Y.; Bendle, J.A.; Pancost, R.D.; Yan, Y.; Ruan, X.; Warren, B.; Lü, X.; Li, X.; Yao, Y.; Huang, X.; et al. Leaf Wax and Sr-Nd Isotope Evidence for High-Latitude Dust Input to the Central South China Sea and Its Implication for Fertilization. Geophys. Res. Lett. 2021, 48, 11. [Google Scholar] [CrossRef]
- Jickells, T.; Deuser, W.; Fleer, A.; Hemleben, C. Variability of some elemental fluxes in the western tropical Atlantic Ocean. Oceanol. Acta 1990, 13, 291–298. [Google Scholar]
- Kremling, K.; Streu, P. Saharan dust influenced trace element fluxes in deep North Atlantic subtropical waters. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 1155–1168. [Google Scholar] [CrossRef]
- Lanning, N.T.; Jiang, S.; Amaral, V.J.; Mateos, K.; Steffen, J.M.; Lam, P.J.; Boyle, E.A.; Fitzsimmons, J.N. Isotopes illustrate vertical transport of anthropogenic Pb by reversible scavenging within Pacific Ocean particle veils. Proc. Natl. Acad. Sci. USA 2023, 120, e2219688120. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Ni, Z.; Liu, S.; Jiang, Z.; Huang, X. Atmospheric deposition of trace elements to Daya Bay, South China Sea: Fluxes and sources. Mar. Pollut. Bull. 2018, 127, 672–683. [Google Scholar] [CrossRef]
- Duce, R.A.; Liss, P.S.; Merrill, J.T.; Atlas, E.L.; Buat-Menard, P.; Hicks, B.B.; Miller, J.M.; Prospero, J.M.; Arimoto, R.; Church, T.M.; et al. The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles 1991, 5, 193–259. [Google Scholar] [CrossRef]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef]
- Ridge, P.G.; Zhang, Y.; Gladyshev, V.N. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 2008, 3, e1378. [Google Scholar] [CrossRef]
- Rixen, T.; Gaye, B.; Emeis, K.-C.; Ramaswamy, V. The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean. Biogeosciences 2019, 16, 485–503. [Google Scholar] [CrossRef]
- Twining, B.S.; Baines, S.B. The trace metal composition of marine phytoplankton. Ann. Rev. Mar. Sci. 2013, 5, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-H.; Takano, S.; Yang, S.-C.; Huang, K.-F.; Sohrin, Y.; Ho, T.-Y. Zn Isotope Composition in the Water Column of the Northwestern Pacific Ocean: The Importance of External Sources. Glob. Biogeochem. Cycles 2020, 34, e2019GB006379. [Google Scholar] [CrossRef]
Process | Solution | Volume | Temperature | Time |
---|---|---|---|---|
Predigestion | super pure HNO3-HF (1:5 v/v) | 3 mL | 110 °C | 12 h |
Dryness | / | / | 110 °C | 6 h |
Digestion | super pure HNO3-HF (1:5 v/v) | 3 mL | 190 °C | 48 h |
Digestion | super pure 50% HCl and HNO3 (4:1 v/v) | 3 mL | 110 °C | 6 h |
Dryness | / | / | 110 °C | 6 h |
Dryness (removing HF and HCl) | 50% ultrapure HNO3 | 3 mL | 110 °C | 6 h |
Extraction | 50% ultrapure HNO3 | 3 mL | 110 °C | 12 h |
Dilution | 2% ultrapure HNO3 | ~9 mL | 25 °C | / |
No. | Interval Start | Interval End | P | Al | Fe | Mn | Co | Ni | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 06/27/09 | 07/13/09 | 2.36 | 84 | 22.3 | 0.91 | 0.008 | 0.05 | 0.08 | 0.14 |
2 | 07/13/09 | 07/29/09 | 2.36 | 90 | 23.6 | 1.24 | 0.011 | 0.05 | 0.07 | 0.17 |
3 | 07/29/09 | 08/14/09 | 2.84 | 97 | 24.6 | 1.16 | 0.010 | 0.05 | 0.06 | 0.15 |
4 | 08/14/09 | 08/30/09 | 2.61 | 57 | 46.1 * | 1.00 | 0.008 | 0.06 | 0.10 | 0.33 |
5 | 08/30/09 | 09/15/09 | 1.62 | 35 | 10.3 | 0.50 | 0.004 | 0.02 | 0.03 | 0.15 |
6 | 09/15/09 | 10/01/09 | 1.38 | 45 | 12.1 | 0.76 | 0.006 | 0.03 | 0.05 | 0.24 |
7 | 10/01/09 | 10/17/09 | 1.59 | 46 | 12.3 | 0.78 | 0.006 | 0.03 | 0.04 | 0.10 |
8 | 10/17/09 | 11/02/09 | 2.49 | 84 | 22.9 | 1.04 | 0.009 | 0.05 | 0.05 | 0.20 |
9 | 11/02/09 | 11/18/09 | 7.12 | 356 | 87.7 | 3.75 | 0.038 | 0.16 | 0.16 | 0.40 |
10 | 11/18/09 | 12/04/09 | 8.10 | 532 | 128.7 | 3.81 | 0.042 | 0.14 | 0.12 | 0.37 |
11 | 12/04/09 | 12/20/09 | 4.66 | 200 | 53.0 | 1.86 | 0.019 | 0.07 | 0.07 | 0.18 |
12 | 12/20/09 | 01/05/10 | 4.08 | 253 | 65.7 | 2.45 | 0.025 | 0.09 | 0.09 | 0.22 |
13 | 01/05/10 | 01/21/10 | 6.97 | 116 | 29.3 | 1.33 | 0.012 | 0.05 | 0.05 | 0.15 |
14 | 01/21/10 | 02/06/10 | 3.45 | 91 | 23.9 | 1.17 | 0.010 | 0.04 | 0.05 | 0.12 |
15 | 02/06/10 | 02/22/10 | 5.83 | 224 | 58.5 | 3.01 | 0.026 | 0.11 | 0.12 | 0.23 |
16 | 02/22/10 | 03/10/10 | 4.71 | 171 | 44.6 | 2.29 | 0.019 | 0.08 | 0.10 | 0.26 |
17 | 03/10/10 | 03/26/10 | 1.36 | 67 | 17.6 | 0.77 | 0.007 | 0.03 | 0.03 | 0.11 |
18 | 03/26/10 | 04/11/10 | 7.45 | 606 | 145.2 | 4.27 | 0.052 | 0.16 | 0.15 | 0.41 |
19 | 04/11/10 | 04/27/10 | 4.79 | 336 | 83.3 | 2.94 | 0.031 | 0.12 | 0.12 | 0.34 |
20 | 04/27/10 | 05/13/10 | 4.13 | 231 | 57.4 | 2.40 | 0.024 | 0.09 | 0.10 | 0.29 |
No. | Interval Start | Interval End | P | Al | Fe | Mn | Co | Ni | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 06/27/09 | 07/13/09 | 2.25 | 117 | 30.4 | 1.88 | 0.016 | 0.06 | 0.09 | 0.33 |
2 | 07/13/09 | 07/29/09 | 2.11 | 119 | 31.0 | 1.93 | 0.016 | 0.06 | 0.10 | 0.19 |
3 | 07/29/09 | 08/14/09 | 2.57 | 139 | 41.7 | 2.35 | 0.019 | 0.07 | 0.12 | 0.21 |
4 | 08/14/09 | 08/30/09 | 1.92 | 117 | 33.6 | 2.31 | 0.019 | 0.06 | 0.10 | 0.16 |
5 | 08/30/09 | 09/15/09 | 1.83 | 109 | 28.3 | 2.15 | 0.018 | 0.06 | 0.09 | 0.15 |
6 | 09/15/09 | 10/01/09 | 1.44 | 84 | 26.7 | 1.72 | 0.014 | 0.05 | 0.08 | 0.13 |
7 | 10/01/09 | 10/17/09 | 1.76 | 84 | 22.7 | 1.69 | 0.014 | 0.04 | 0.07 | 0.13 |
8 | 10/17/09 | 11/02/09 | 0.66 | 39 | 10.4 | 0.74 | 0.006 | 0.02 | 0.03 | 0.10 |
9 | 11/02/09 | 11/18/09 | 4.13 | 274 | 68.9 | 4.31 | 0.038 | 0.11 | 0.17 | 0.31 |
10 | 11/18/09 | 12/04/09 | 5.02 | 355 | 88.1 | 4.04 | 0.038 | 0.13 | 0.16 | 0.29 |
11 | 12/04/09 | 12/20/09 | 6.86 | 460 | 115.8 | 5.59 | 0.054 | 0.17 | 0.21 | 0.45 |
12 | 12/20/09 | 01/05/10 | 5.07 | 422 | 107.2 | 5.00 | 0.048 | 0.15 | 0.19 | 0.36 |
13 | 01/05/10 | 01/21/10 | 3.70 | 251 | 63.8 | 3.15 | 0.029 | 0.09 | 0.13 | 0.28 |
14 | 01/21/10 | 02/06/10 | 3.65 | 226 | 57.4 | 3.18 | 0.027 | 0.10 | 0.13 | 0.35 |
15 | 02/06/10 | 02/22/10 | 4.03 | 253 | 65.5 | 3.60 | 0.031 | 0.10 | 0.15 | 0.27 |
16 | 02/22/10 | 03/10/10 | 3.93 | 304 | 77.8 | 4.06 | 0.036 | 0.11 | 0.16 | 0.28 |
17 | 03/10/10 | 03/26/10 | 3.46 | 292 | 75.2 | 3.95 | 0.034 | 0.10 | 0.16 | 0.32 |
18 | 03/26/10 | 04/11/10 | 5.27 | 484 | 119.6 | 5.46 | 0.054 | 0.14 | 0.20 | 0.44 |
19 | 04/11/10 | 04/27/10 | 3.82 | 360 | 88.7 | 3.52 | 0.036 | 0.11 | 0.14 | 0.52 |
20 | 04/27/10 | 05/13/10 | 2.12 | 172 | 43.3 | 1.87 | 0.019 | 0.06 | 0.09 | 0.25 |
No. | Interval Start | Interval End | P | Al | Fe | Mn | Co | Ni | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 06/27/09 | 07/13/09 | - | - | - | - | - | - | - | - |
2 | 07/13/09 | 07/29/09 | 1.92 | 154 | 38.4 | 2.55 | 0.020 | 0.06 | 0.11 | 0.15 |
3 | 07/29/09 | 08/14/09 | 1.83 | 140 | 35.4 | 2.48 | 0.020 | 0.06 | 0.10 | 0.15 |
4 | 08/14/09 | 08/30/09 | 1.88 | 143 | 37.3 | 2.58 | 0.025 | 0.18 | 0.11 | 0.27 |
5 | 08/30/09 | 09/15/09 | 1.84 | 138 | 34.2 | 2.54 | 0.021 | 0.06 | 0.10 | 0.14 |
6 | 09/15/09 | 10/01/09 | 1.91 | 132 | 32.9 | 2.62 | 0.021 | 0.06 | 0.11 | 0.13 |
7 | 10/01/09 | 10/17/09 | 1.68 | 115 | 28.3 | 2.37 | 0.019 | 0.06 | 0.10 | 0.18 |
8 | 10/17/09 | 11/02/09 | 1.56 | 124 | 30.6 | 2.59 | 0.021 | 0.06 | 0.10 | 0.13 |
9 | 11/02/09 | 11/18/09 | 1.70 | 126 | 33.3 | 2.60 | 0.022 | 0.06 | 0.10 | 0.16 |
10 | 11/18/09 | 12/04/09 | 2.35 | 195 | 49.4 | 4.09 | 0.038 | 0.13 | 0.14 | 0.19 |
11 | 12/04/09 | 12/20/09 | 4.32 | 312 | 77.8 | 4.92 | 0.044 | 0.11 | 0.16 | 0.24 |
12 | 12/20/09 | 01/05/10 | 4.14 | 378 | 93.7 | 4.94 | 0.061 | 0.13 | 0.20 | 0.27 |
13 | 01/05/10 | 01/21/10 | 3.78 | 348 | 86.7 | 4.37 | 0.053 | 0.12 | 0.18 | 0.25 |
14 | 01/21/10 | 02/06/10 | 3.74 | 361 | 93.1 | 4.54 | 0.049 | 0.13 | 0.18 | 0.28 |
15 | 02/06/10 | 02/22/10 | 4.00 | 292 | 73.9 | 4.74 | 0.041 | 0.11 | 0.16 | 0.34 |
16 | 02/22/10 | 03/10/10 | 4.25 | 273 | 69.4 | 4.64 | 0.041 | 0.13 | 0.16 | 0.22 |
17 | 03/10/10 | 03/26/10 | 3.59 | 291 | 74.4 | 4.77 | 0.041 | 0.12 | 0.18 | 0.56 |
18 | 03/26/10 | 04/11/10 | 3.16 | 252 | 64.2 | 4.45 | 0.039 | 0.09 | 0.16 | 0.22 |
19 | 04/11/10 | 04/27/10 | 3.68 | 306 | 76.4 | 4.98 | 0.046 | 0.11 | 0.17 | 0.26 |
20 | 04/27/10 | 05/13/10 | 2.15 | 205 | 50.7 | 2.84 | 0.027 | 0.07 | 0.11 | 0.18 |
Trace Metal | Depth | Litho. Proportion (%) | Bio. Proportion (%) | Exc. Proportion (%) |
---|---|---|---|---|
Fe | 1000 m | 84 ± 4 | 1.2 ± 0.5 | 15 ± 4 |
2150 m | 83 ± 5 | 0.7 ± 0.1 | 16 ± 5 | |
3200 m | 86 ± 2 | 0.6 ± 0.1 | 13 ± 2 | |
Mn | 1000 m | 32 ± 9 | 0.2 ± 0.1 | 68 ± 9 |
2150 m | 25 ± 6 | 0.1 ± 0.0 | 75 ± 6 | |
3200 m | 21 ± 5 | 0.1 ± 0.0 | 75 ± 17 | |
Co | 1000 m | 63 ± 10 | 3.3 ± 1.2 | 34 ± 10 |
2150 m | 53 ± 8 | 1.5 ± 0.2 | 45 ± 8 | |
3200 m | 45 ± 5 | 1.1 ± 0.1 | 54 ± 5 | |
Ni | 1000 m | 34 ± 11 | 5.3 ± 2.2 | 61 ± 12 |
2150 m | 37 ± 7 | 3.3 ± 0.3 | 60 ± 7 | |
3200 m | 35 ± 8 | 2.7 ± 0.6 | 62 ± 9 | |
Cu | 1000 m | 24 ± 12 | 17.3 ± 7.6 | 59 ± 16 |
2150 m | 20 ± 6 | 8.6 ± 1.4 | 71 ± 7 | |
3200 m | 19 ± 3 | 6.9 ± 1.1 | 74 ± 4 | |
Zn | 1000 m | 27 ± 13 | 10.0 ± 4.8 | 63 ± 16 |
2150 m | 29 ± 9 | 6.5 ± 1.6 | 65 ± 10 | |
3200 m | 37 ± 10 | 7.0 ± 1.8 | 56 ± 11 |
Trace Metal | Depth | Organic Matter | CaCO3 | Opal | Lithogenic Matter |
---|---|---|---|---|---|
Fe | 1000 m | 0.759 | 0.368 | 0.747 | 0.796 |
2150 m | 0.659 | 0.497 | 0.687 | 0.735 | |
3200 m | 0.812 | 0.592 | 0.823 | 0.909 | |
Mn | 1000 m | 0.508 | 0.221 | 0.478 | 0.508 |
2150 m | 0.869 | 0.701 | 0.881 | 0.831 | |
3200 m | 0.794 | 0.533 | 0.729 | 0.762 | |
Co | 1000 m | 0.299 | 0.161 | 0.331 | 0.272 |
2150 m | 0.827 | 0.701 | 0.789 | 0.782 | |
3200 m | 0.723 | 0.655 | 0.661 | 0.741 | |
Ni | 1000 m | 0.387 | 0.155 | 0.322 | 0.279 |
2150 m | 0.978 | 0.834 | 0.908 | 0.806 | |
3200 m | 0.582 | 0.385 | 0.490 | 0.555 | |
Cu | 1000 m | 0.073 | 0.034 | 0.065 | 0.019 |
2150 m | 0.825 | 0.628 | 0.833 | 0.713 | |
3200 m | 0.831 | 0.624 | 0.820 | 0.876 | |
Zn | 1000 m | 0.024 | 0.001 | <0.001 | 0.013 |
2150 m | 0.173 | 0.097 | 0.170 | 0.303 | |
3200 m | 0.077 | 0.056 | 0.131 | 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, J.; Li, H.; Wu, Z.; He, X.; Ran, L.; Wiesner, M.G.; Chen, J. Different Source Contributions of Bioactive Trace Metals in Sinking Particles in the Northern South China Sea. J. Mar. Sci. Eng. 2023, 11, 2125. https://doi.org/10.3390/jmse11112125
Li W, Zhang J, Li H, Wu Z, He X, Ran L, Wiesner MG, Chen J. Different Source Contributions of Bioactive Trace Metals in Sinking Particles in the Northern South China Sea. Journal of Marine Science and Engineering. 2023; 11(11):2125. https://doi.org/10.3390/jmse11112125
Chicago/Turabian StyleLi, Weiying, Jingjing Zhang, Hongliang Li, Zezhou Wu, Xingju He, Lihua Ran, Martin G. Wiesner, and Jianfang Chen. 2023. "Different Source Contributions of Bioactive Trace Metals in Sinking Particles in the Northern South China Sea" Journal of Marine Science and Engineering 11, no. 11: 2125. https://doi.org/10.3390/jmse11112125
APA StyleLi, W., Zhang, J., Li, H., Wu, Z., He, X., Ran, L., Wiesner, M. G., & Chen, J. (2023). Different Source Contributions of Bioactive Trace Metals in Sinking Particles in the Northern South China Sea. Journal of Marine Science and Engineering, 11(11), 2125. https://doi.org/10.3390/jmse11112125