Utilizing Numerical Models and GIS to Enhance Information Management for Oil Spill Emergency Response and Resource Allocation in the Taiwan Waters
Abstract
:1. Introduction
2. Numerical Tools and Observational Data
2.1. Oil Spill Simulation
2.2. X-Band Marine Radar
2.3. GIS
3. TS Taipei Oil Spill Incident on the North Coast of Taiwan
3.1. Overview of the TS Taipei Oil Spill Incident
3.2. Validation
3.3. Oil Spill Simulation Result
4. Unknown Oil Spill Incident in Taichung Port
4.1. Overview of the Taichung Port Oil Incident
4.2. Validation
4.3. Oil Spill Simulation Result
5. Information Establishment for Emergency Response
5.1. Oil Spill Risk Map
5.2. Oil Spill Emergency Response
5.3. Resource Allocation for Oil Spill Containment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehr, W.J. Review of modeling procedures for oil spill weathering behavior. Adv. Ecol. Sci. 2001, 9, 51–90. [Google Scholar]
- Fingas, M. (Ed.) Handbook of Oil Spill Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Reed, M.; Johansen, Ø.; Brandvik, P.J.; Daling, P.; Lewis, A.; Fiocco, R.; Prentki, R. Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Sci. Technol. Bull. 1999, 5, 3–16. [Google Scholar] [CrossRef]
- Lehr, W.; Jones, R.; Evans, M.; Simecek-Beatty, D.; Overstreet, R. Revisions of the ADIOS oil spill model. Environ. Model. Softw. 2002, 17, 189–197. [Google Scholar] [CrossRef]
- Spaulding, M.L. State of the art review and future directions in oil spill modeling. Mar. Pollut. Bull. 2017, 115, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Periáñez, R. A Lagrangian oil spill transport model for the Red Sea. Ocean Eng. 2020, 217, 107953. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Q.; Zheng, C.; Han, Z.; Cai, B.; Liu, Y. Oil spill modeling of Chengdao oilfield in the Chinese Bohai Sea. Ocean Eng. 2022, 255, 111422. [Google Scholar] [CrossRef]
- Proctor, R.; Flather, R.A.; Elliott, A.J. Modelling tides and surface drift in the Arabian Gulf—Application to the Gulf oil spill. Cont. Shelf Res. 1994, 14, 531–545. [Google Scholar] [CrossRef]
- Guo, W.J.; Wang, Y.X. A numerical oil spill model based on a hybrid method. Mar. Pollut. Bull. 2009, 58, 726–734. [Google Scholar] [CrossRef]
- Nordam, T.; Beegle-Krause, C.J.; Skancke, J.; Nepstad, R.; Reed, M. Improving oil spill trajectory modelling in the Arctic. Mar. Pollut. Bull. 2019, 140, 65–74. [Google Scholar] [CrossRef]
- Chiu, C.M.; Huang, C.J.; Wu, L.C.; Zhang, J.Y.L.; Chang, L.Z.H.; Fan, Y.M.; Yu, H.C. Forecasting of oil-spill trajectories by using SCHISM and X-band marine radar. Mar. Pollut. Bull. 2018, 137, 566–581. [Google Scholar] [CrossRef]
- Fingas, M. Oil Spill Science and Technology; Gulf Professional Publishing: Houston, TX, USA, 2016. [Google Scholar]
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Amir-Heidari, P.; Raie, M. Probabilistic risk assessment of oil spill from offshore oil wells in Persian Gulf. Mar. Pollut. Bull. 2018, 136, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Liubartseva, S.; Federico, I.; Coppini, G.; Lecci, R. Stochastic oil spill modeling for environmental protection at the Port of Taranto (southern Italy). Mar. Pollut. Bull. 2021, 171, 112744. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.R.; Grubesic, T.H. Oil spill modeling: Risk, spatial vulnerability, and impact assessment. Prog. Phys. Geogr. Earth Environ. 2018, 42, 112–127. [Google Scholar] [CrossRef]
- Barker, C.H.; Kourafalou, V.H.; Beegle-Krause, C.J.; Boufadel, M.; Bourassa, M.A.; Buschang, S.G.; Zheng, Y. Progress in operational modeling in support of oil spill response. J. Mar. Sci. Eng. 2020, 8, 668. [Google Scholar] [CrossRef]
- Kankara, R.S.; Arockiaraj, S.; Prabhu, K. Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India. Mar. Pollut. Bull. 2016, 106, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Skognes, K.; Johansen, Ø. Statmap-a 3-dimensional model for oil spill risk assessment. Environ. Model. Softw. 2004, 19, 727–737. [Google Scholar] [CrossRef]
- Fernandes, R.; Necci, A.; Krausmann, E. Model(s) for the Dispersion of Hazardous Materials in Floodwaters for RAPID-N, EUR 30968 EN; European Union: Luxembourg, 2022; ISBN 978-92-76-46707-6. JRC127375. [Google Scholar]
- Duran, R.; Romeo, L.; Whiting, J.; Vielma, J.; Rose, K.; Bunn, A.; Bauer, J. Simulation of the 2003 Foss barge-point wells oil spill: A comparison between BLOSOM and GNOME oil spill models. J. Mar. Sci. Eng. 2018, 6, 104. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless cross-scale modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, Y.; Friedrichs, M.; Wang, H.V.; Irby, I.; Shen, J.; Wang, Z. A 3D, cross-scale, baroclinic model with implicit vertical transport for the Upper Chesapeake Bay and its tributaries. Ocean Model. 2016, 107, 82–96. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, Y.J.; Wang, H.V.; Friedrichs, M.A.; Irby, I.D.; Alteljevich, E.; Valle-Levinson, A.; Wang, Z.; Huang, H.; Shen, J.; et al. A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry. Ocean Model. 2018, 127, 16–39. [Google Scholar] [CrossRef]
- Reed, M.; Turner, C.; Odulo, A. The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Sci. Technol. Bull. 1994, 1, 143–157. [Google Scholar] [CrossRef]
- Spaulding, M.L.; Isaji, T.; Hall, P.; Allen, A.A. A hierarchy of stochastic particle models for search and rescue (SAR): Application to predict surface drifter trajectories using HF radar current forcing. J. Mar. Sci. Eng. 2006, 8, 181. [Google Scholar]
- Lynch, D.R.; Greenberg, D.A.; Bilgili, A.; McGillicuddy, D.J., Jr.; Manning, J.P.; Aretxabaleta, A.L. Particles in the Coastal Ocean: Theory and Applications; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Farzingohar, M.; Zelina, Z.; Yasemi, M. Oil spill modelling of diesel and gasoline with GNOME around Rajaee port of Bandar Abbas, Iran. Iran. J. Fish. Sci. 2011, 10, 35–46. [Google Scholar]
- Cheng, Y.; Li, X.; Xu, Q.; Garcia-Pineda, O.; Andersen, O.B.; Pichel, W.G. SAR observation and model tracking of an oil spill event in coastal waters. Mar. Pollut. Bull. 2011, 62, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Gurumoorthi, K.; Suneel, V.; Rao, V.T.; Thomas, A.P.; Alex, M.J. Fate of MV Wakashio oil spill off Mauritius coast through modelling and remote sensing observations. Mar. Pollut. Bull. 2021, 172, 112892. [Google Scholar] [CrossRef] [PubMed]
- Zelenke, B.; O’Connor, C.; Barker, C.H.; Beegle-Krause, C.J. General NOAA Operational Modeling Environment (GNOME) Technical Documentation; GNOME: Seattle, WA, USA, 2012. [Google Scholar]
- ITOPF (Oil Tanker Spill Statistics). The International Tanker Owners Pollution Federation. 2019. Available online: https://www.itopf.org/fileadmin/uploads/itopf/data/Documents/Company_Lit/Oil_Spill_Stats_brochure_2020_for_web.pdf (accessed on 26 October 2023).
- Marta-Almeida, M.; Ruiz-Villarreal, M.; Pereira, J.; Otero, P.; Cirano, M.; Zhang, X.; Hetland, R.D. Efficient tools for marine operational forecast and oil spill tracking. Mar. Pollut. Bull. 2013, 71, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ateljevich, E.; Yu, H.-C.; Wu, C.H.; Yu, J.C.S. A new vertical coordinate system for a 3D unstructured-grid model. Ocean Model. 2015, 85, 16–31. [Google Scholar] [CrossRef]
- Baptista, A.M. Solution of Advection-Dominated Transport by Eulerian–Lagrangian Methods Using the Backwards Method of Characteristics. Ph.D. Dissertation, MIT, Cambridge, MA, USA, 1987. [Google Scholar]
- Roland, A.; Zhang, Y.J.; Wang, H.V.; Meng, Y.; Teng, Y.-C.; Maderich, V.; Brovchenko, I.; Dutour-Sikiric, M.; Zanke, U. A fully coupled 3D wave-current interaction model on unstructured meshes. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Schloen, J.; Stanev, E.V.; Grashorn, S. Wave-current interactions in the southern North Sea: The impact on salinity. Ocean Model. 2017, 111, 19–37. [Google Scholar] [CrossRef]
- Chuang, L.Z.H.; Chiu, C.M.; Doong, D.J.; Huang, C.C.; Wu, L.C.; Fan, Y.M.; Huang, C.J.; Zhang, Y.J. Risk Assessment and Emergency Response Strategy of Oil Spills in Waters around Taiwan. Mar. Res. 2021, 1, 87–100. [Google Scholar]
- Stolzenbach, K.; Madsen, O.S.; Adams, E.E.; Pollack, A.M. A Review and Evaluation of Basic Techniques for Predicting the Behavior of Surface Oil Slicks; Rep. 22; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 1997. [Google Scholar]
- GNOME. General NOAA Operational Modeling Environment (GNOME) Technical Documentation. NOAA Technical Memorandum NOS OR&R 40; GNOME: Seattle, WA, USA, 2012. [Google Scholar]
- Prasad, S.J.; Balakrishnan Nair, T.M.; Rahaman, H.; Shenoi, S.S.C.; Vijayalakshmi, T. An assessment on oil spill trajectory prediction: Case study on oil spill off Ennore Port. J. Earth Syst. Sci. 2018, 127, 111. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Becker, E. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Yuan, X.; Wood, E.F.; Luo, L.; Pan, M. A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Robbe, N.; Hengstermann, T. Remote sensing of marine oil spills from airborne platforms using multi-sensor systems. Water Pollut. VIII Model. Monit. Manag. 2006, 1, 347–355. [Google Scholar]
- Zhu, X.; Li, Y.; Feng, H.; Liu, B.; Xu, J. Oil spill detection method using X-band marine radar imagery. J. Appl. Remote Sens. 2015, 9, 095985. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Xu, J.; Zhu, X. Adaptive enhancement of X-band marine radar imagery to detect oil spill segments. Sensors 2017, 17, 2349. [Google Scholar] [CrossRef]
- Dash, N. The use of geographic information systems in disaster research. Int. J. Mass Emerg. Disasters 1997, 15, 135–146. [Google Scholar] [CrossRef]
- Ivanov, A.Y.; Zatyagalova, V.V. A GIS approach to mapping oil spills in a marine environment. Int. J. Remote Sens. 2008, 29, 6297–6313. [Google Scholar] [CrossRef]
- Balogun, A.L.; Yekeen, S.T.; Pradhan, B.; Yusof, K.B.W. Oil spill trajectory modelling and environmental vulnerability mapping using GNOME model and GIS. Environ. Pollut. 2021, 268, 115812. [Google Scholar] [CrossRef]
- Bucelli, M.; Paltrinieri, N.; Landucci, G. Integrated risk assessment for oil and gas installations in sensitive areas. Ocean Eng. 2018, 150, 377–390. [Google Scholar] [CrossRef]
- D’Affonseca, F.M.; Reis, F.A.G.V.; dos Santos Corrêa, C.V.; Wieczorek, A.; do Carmo Giordano, L.; Marques, M.L.; Riedel, P.S. Environmental sensitivity index maps to manage oil spill risks: A review and perspectives. Ocean Coast. Manag. 2023, 239, 106590. [Google Scholar] [CrossRef]
- Mohamadi, B.; Xie, Z.; Liu, F. GIS based oil spill risk assessment model for the Niger Delta’s vegetation. Nat. Environ. Pollut. Technol. 2015, 14, 545. [Google Scholar]
- Fan, C.; Hsu, C.J.; Lin, J.Y.; Kuan, Y.K.; Yang, C.C.; Liu, J.H.; Yeh, J.H. Taiwan’s legal framework for marine pollution control and responses to marine oil spills and its implementation on TS Taipei cargo shipwreck salvage. Mar. Pollut. Bull. 2018, 136, 84–91. [Google Scholar] [CrossRef]
- ITOPF. TIP 01: Aerial Observation of Marine Oil Spills, Technical Information Paper; ITOPF: Lodon, UK, 2014. [Google Scholar]
- ITOPF. TIP 02: Fate of Marine Oil Spills, Technical Information Paper; ITOPF: Lodon, UK, 2014. [Google Scholar]
- General NOAA. Oil Modelling Environment (GNOME) User’s Manual; NOAA: Seattle, WA, USA, 2002.
Parameters | Description |
---|---|
Oil type | Fuel oil |
Spill area | About 1 km2 |
Amount released | 60 KL |
Release start | At 11 am on 26 March 2016 |
Age at release | 0 h |
Splots | 1000 |
Diffusion coefficient | 10 m2/s |
Current | SCHISM |
Wind | NCEP and Buoy (Case I and Case II) |
Simulation duration | 1 day, 3 days, and 34 days |
Parameters | Description |
---|---|
Oil type | Fuel oil |
Spill location | Latitude: 24°17′12.6″ N Longitude: 120°31′33.2″ E |
Amount released | 30 KL |
Release start | At 8:30 am on 19 October 2018 |
Age at release | 1 h |
Splots | 500 |
Diffusion coefficient | 10 m2/s |
Current | SCHISM |
Wind | Meteorological station |
Simulation duration | 12 h |
Class | GIS Object | Icon |
---|---|---|
Oil spill simulation result | Oil spill location | |
Oil in water | ● | |
Oil on land | ▲ | |
Environmental feature | River | |
Fishing port | ● | |
Ecologically sensitive area | Exclusive fishing right | |
Artificial reef | ||
National scenic area | ||
Wetland |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, C.-M.; Chuang, L.Z.-H.; Chuang, W.-L.; Wu, L.-C.; Huang, C.-J.; Zhang, Y.J. Utilizing Numerical Models and GIS to Enhance Information Management for Oil Spill Emergency Response and Resource Allocation in the Taiwan Waters. J. Mar. Sci. Eng. 2023, 11, 2094. https://doi.org/10.3390/jmse11112094
Chiu C-M, Chuang LZ-H, Chuang W-L, Wu L-C, Huang C-J, Zhang YJ. Utilizing Numerical Models and GIS to Enhance Information Management for Oil Spill Emergency Response and Resource Allocation in the Taiwan Waters. Journal of Marine Science and Engineering. 2023; 11(11):2094. https://doi.org/10.3390/jmse11112094
Chicago/Turabian StyleChiu, Chi-Min, Laurence Zsu-Hsin Chuang, Wei-Liang Chuang, Li-Chung Wu, Ching-Jer Huang, and Yinglong Joseph Zhang. 2023. "Utilizing Numerical Models and GIS to Enhance Information Management for Oil Spill Emergency Response and Resource Allocation in the Taiwan Waters" Journal of Marine Science and Engineering 11, no. 11: 2094. https://doi.org/10.3390/jmse11112094
APA StyleChiu, C.-M., Chuang, L. Z.-H., Chuang, W.-L., Wu, L.-C., Huang, C.-J., & Zhang, Y. J. (2023). Utilizing Numerical Models and GIS to Enhance Information Management for Oil Spill Emergency Response and Resource Allocation in the Taiwan Waters. Journal of Marine Science and Engineering, 11(11), 2094. https://doi.org/10.3390/jmse11112094