A Contextually Supported Abnormality Detector for Maritime Trajectories
Abstract
:1. Introduction
- We present a novel method for detecting abnormal maritime trajectories based on two-step clustering, which also provides a contextual decision support tool to help a VTS operator make the final decision.
- We design positional and kinematic similarity measures that focus on different dimensions of maritime trajectories.
- We provide evidence that a multi-step clustering approach can disentangle positional and kinematic information, resulting in a better description of behavioral patterns in a large ROI.
- We provide public access to datasets of preprocessed maritime trajectories in regions of Danish waters, including annotations during a Search and Rescue event.
2. Related Work
3. Methodology
3.1. Notations
3.2. Similarity Measures
3.2.1. Hausdorff
3.2.2. Average Haversine
3.2.3. Dynamic Time Warping
3.2.4. Kinematic DTW
3.3. Two-Step Clustering for Abnormality Detection
- Assign an input trajectory to a cluster, based on its positional dimensions (latitude, longitude, and time).
- Decide on abnormality, based on the kinematic dimension (speed and course), and provide a context to the decision with the most similar trajectories.
4. Experimental Results
4.1. Datasets
4.2. Experimental Setting
4.3. Positional Clustering
4.3.1. Quantitative Analysis
4.3.2. Qualitative Analysis
4.3.3. Runtime Analysis
4.3.4. Discussion of the Positional Clustering
4.4. Kinematic Clustering
4.4.1. Positional Similarity Measures
4.4.2. Kinematic Similarity Measures
4.4.3. Discussion on the Kinematic Clustering
4.5. Single-Step Clustering
4.6. Outliers and Embedding Analysis
4.6.1. LOF Contamination and Cluster Size
4.6.2. Outliers and Embedding Analysis
4.7. Abnormality Detection
4.7.1. Anomaly Detection
4.7.2. Anomaly Detection and Context
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | Automatic Identification System |
MMSI | Maritime Mobile Service Identity |
GPS | Global Positioning System |
VTS | Vessel Traffic Service |
LOF | Local Outlier Factor |
ROI | Region of Interest |
DTW | Dynamic Time Warping |
LCSS | Longest Common SubSequence |
DP | Douglas–Peucker algorithm |
RVAE | Recurrent Variational AutoEncoder |
VRNN | Variational Recurrent Neural Network |
AH | Average Haversine |
KNN | K-Nearest Neighbors |
AUC | Area Under the receiver operating characteristic Curve |
References
- IMO. About IMO; International Maritime Organization: London, UK, 2020. Available online: http://www.imo.org/en/About/Pages/Default.aspx (accessed on 20 October 2023).
- Asariotis, R.; Benamara, H.; Lavelle, J.; Premti, A. Maritime Piracy. Part I: An Overview of Trends, Costs and Trade-Related Implications. UNCTAD 2014. Available online: https://eprints.soton.ac.uk/368254/ (accessed on 20 October 2023).
- Lebedev, A.O.; Lebedeva, M.P.; Butsanets, A.A. Could the accident of “Ever Given” have been avoided in the Suez Canal? J. Phys. Conf. Ser. 2021, 2061, 12127. [Google Scholar] [CrossRef]
- European Maritime Safety Agency. Annual Overview of Marine Casualties and Incidents; Technical Report; European Maritime Safety Agency: Lisbon, Portugal, 2022.
- Long, T.; Widjaja, S.; Wirajuda, H.; Juwana, S. Approaches to combatting illegal, unreported and unregulated fishing. Nat. Food 2020, 1, 389–391. [Google Scholar] [CrossRef]
- Ljungqvist, M. Confirmed Sabotage at Nord Stream. (In Swedish). Available online: https://www.aklagare.se/nyheter-press/pressmeddelanden/2022/november/bekraftat-sabotage-vid-nord-stream/ (accessed on 20 October 2023).
- International Maritime Organization (IMO). International Convention for the Safety of Life at Sea (SOLAS), Chapter V: Safety of Navigation, Regulation 19; International Maritime Organization (IMO): London, UK, 1998.
- MarineTraffic. A Day in Numbers. MarineTraffic Blog. Available online: https://www.marinetraffic.com/blog/a-day-in-numbers/ (accessed on 20 October 2023).
- Pallotta, G.; Vespe, M.; Bryan, K. Traffic knowledge discovery from AIS data. In Proceedings of the 16th International Conference on Information Fusion, IEEE, Istanbul, Turkey, 9–12 July 2013. [Google Scholar]
- Liu, B.; De Souza, E.N.; Matwin, S.; Sydow, M. Knowledge-based clustering of ship trajectories using density-based approach. In Proceedings of the 2014 IEEE International Conference on Big Data, IEEE Big Data 2014, Washington, DC, USA, 27–30 October 2014; pp. 603–608. [Google Scholar]
- Zhao, L.; Shi, G. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition. Ocean Eng. 2019, 172, 456–467. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Ma, L.; Ji, C. Maritime traffic flow clustering analysis by density based trajectory clustering with noise. Ocean Eng. 2022, 249, 111001. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. An AIS-based deep learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 2021, 215, 107819. [Google Scholar] [CrossRef]
- Pallotta, G.; Jousselme, A.L. Data-driven detection and context-based classification of maritime anomalies. In Proceedings of the 2015 18th International Conference on Information Fusion (Fusion), IEEE, Washington, DC, USA, 6–9 July 2015. [Google Scholar]
- Nguyen, D.; Vadaine, R.; Hajduch, G.; Garello, R.; Fablet, R. GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5655–5667. [Google Scholar] [CrossRef]
- Riveiro, M.; Pallotta, G.; Vespe, M. Maritime anomaly detection: A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1266. [Google Scholar] [CrossRef]
- Stach, T.; Kinkel, Y.; Constapel, M.; Burmeister, H.C. Maritime Anomaly Detection for Vessel Traffic Services: A Survey. J. Mar. Sci. Eng. 2023, 11, 1174. [Google Scholar] [CrossRef]
- Endsley, M.R. From Here to Autonomy: Lessons Learned From Human—Automation Research. Hum. Factors 2017, 59, 5–27. [Google Scholar] [CrossRef]
- Wang, L.; Chen, P.; Chen, L.; Mou, J. Ship AIS Trajectory Clustering: An HDBSCAN-Based Approach. J. Mar. Sci. Eng. 2021, 9, 566. [Google Scholar] [CrossRef]
- Liu, B.; de Souza, E.N.; Hilliard, C.; Matwin, S. Ship movement anomaly detection using specialized distance measures. In Proceedings of the 2015 18th International Conference on Information Fusion (Fusion), IEEE, Washington, DC, USA, 6–9 July 2015. [Google Scholar]
- Hu, J.; Kaur, K.; Lin, H.; Wang, X.; Hassan, M.M.; Razzak, I.; Hammoudeh, M. Intelligent Anomaly Detection of Trajectories for IoT Empowered Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2382–2391. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Li, B.; Qi, Z.; Rizvi, J.; Liu, H.; Liu, Y.; Li, B.; Qi, Z. Ship Abnormal Behavior Detection Method Based on Optimized GRU Network. J. Mar. Sci. Eng. 2022, 10, 249. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Zhang, X.; Li, X.; Wang, J.; Wu, Z. A Novel Hybrid Approach for Detecting Abnormal Vessel Behavior in Maritime Traffic. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4–6 August 2023; pp. 1–7. [Google Scholar]
- Widyantara, I.M.O.; Hartawan, I.P.N.; Karyawati, A.A.I.N.E.; Er, N.I.; Artana, K.B. Automatic identification system-based trajectory clustering framework to identify vessel movement pattern. Iaes Int. J. Artif. Intell. 2023, 12, 1–11. [Google Scholar] [CrossRef]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD ’00, Dallas, TX, USA, 16–18 May 2000; pp. 93–104. [Google Scholar]
- Larsen, M.S. Russian ‘Ghost Ships’ Are Turning the Seabed into a Future Battlefield. 2023. Available online: https://foreignpolicy.com/2023/05/02/russia-europe-denmark-spy-surveillance-ships-seabed-cables/ (accessed on 20 October 2023).
- Laxhammar, R.; Falkman, G. Inductive conformal anomaly detection for sequential detection of anomalous sub-trajectories. Ann. Math. Artif. Intell. 2015, 74, 67–94. [Google Scholar] [CrossRef]
- Zhen, R.; Jin, Y.; Hu, Q.; Shao, Z.; Nikitakos, N. Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier. J. Navig. 2017, 70, 648–670. [Google Scholar] [CrossRef]
- Klaas, G.; De Vries, D.; Van Someren, M. Machine learning for vessel trajectories using compression, alignments and domain knowledge. Expert Syst. Appl. 2012, 39, 13426–13439. [Google Scholar]
- Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. In Classics in Cartography: Reflections on Influential Articles from Cartographica; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 15–28. [Google Scholar]
- Pallotta, G.; Vespe, M.; Bryan, K. Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction. Entropy 2013, 15, 2218–2245. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.p.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Luo, S.; Zeng, W.; Sun, B. Contrastive Learning for Graph-Based Vessel Trajectory Similarity Computation. J. Mar. Sci. Eng. 2023, 11, 1840. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, G. Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network. J. Navig. 2019, 72, 894–916. [Google Scholar] [CrossRef]
- Shamos, M.; Preparata, F. Computational Geometry An Introduction. In Computational Geometry an Introduction, 1st ed.; Schneider, F., Gries, D., Eds.; Springer: New York, NY, USA, 1985; Chapter 5; p. 223. [Google Scholar]
- Nanni, M.; Pedreschi, D. Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 2006, 27, 267–289. [Google Scholar] [CrossRef]
- Olesen, K.V.; Christensen, A.N.; Hørlück, S.; Clemmensen, L.K.H. AIS Trajectories from Danish Waters for Abnormal Behavior Detection. 2022. Available online: https://data.dtu.dk/collections/AIS_Trajectories_from_Danish_Waters_for_Abnormal_Behavior_Detection/6287841 (accessed on 20 October 2023).
- Soefartsstyrelsen. Historical AIS Data. Available online: https://dma.dk/safety-at-sea/navigational-information/ais-data (accessed on 20 October 2023).
- Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior. In Proceedings of the 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MI, USA, 20–24 June 2011. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
Normalcy Model | Limitation of Normalcy Model | Works |
---|---|---|
Clustering of individual updates | Applied on restricted datasets | [20] |
Lack description of kinematic behavior | [9,14] | |
Clustering of trajectory similarities | Applied on restricted datasets | [12,19,28] |
Lack description of kinematic behavior | [12,19,24,27,29,33] | |
Deep learning methods | Interpretability | [15,21,22,23,33,34] |
MMSI | Timestamp | Latitude | Longitude | Speed | Course |
---|---|---|---|---|---|
211149000 | 2021-11-29 22:47:39 | 54.40 | 12.16 | 7.13 | 25.83 |
211149000 | 2021-11-29 22:49:39 | 54.41 | 12.17 | 7.12 | 27.30 |
211149000 | 2021-11-29 22:51:39 | 54.42 | 12.18 | 7.15 | 27.05 |
211149000 | 2021-11-29 22:53:39 | 54.42 | 12.18 | 7.16 | 27.40 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
211149000 | 2021-11-30 09:45:39 | 54.41 | 11.91 | 8.16 | 122.16 |
211149000 | 2021-11-30 09:47:39 | 54.40 | 11.90 | 8.09 | 233.83 |
Distance Measure | Clustering Algorithm | Eps-Threshold | MinSamples | # Clusters | Median of # of Members | % Outliers | Silhouette Score |
---|---|---|---|---|---|---|---|
Hausdorff | Hierarchical | 9000 | - | 1515 | 2 | - | |
Hausdorff | DBSCAN | 12,504 | 242 | 15 | 569 | ||
Hausdorff | DBSCAN | 12,504 | 25 | 53 | 110 | ||
Hausdorff | DBSCAN | 27,000 | 242 | 7 | 1446 | ||
DTW | Hierarchical | 140,000 | - | 2862 | 1 | - | |
DTW | DBSCAN | 60,941 | 91 | 7 | 190 | ||
Avg. Haversine | DBSCAN | 261 | 14 | 485.5 | |||
Avg. Haversine | Hierarchical | 10 | - | 52 | 232 | - |
Avg. Haversine, Equation (2) | DTW | Hausdorff | Kinematic, Equation (4) |
---|---|---|---|
16.38 μs | 107.2 μs | 1084 μs | 12,788 μs |
Distance Measure | Clustering Method | Eps-Threshold | MinSamples | # Clusters | # Outliers/ Singletons | Silhouette Score |
---|---|---|---|---|---|---|
Avg. Haversine, Equation (2) | Hierarchical | - | 49 | 12 | ||
Hausdorff | Hierarchical | 6250 | - | 134 | 62 | |
Avg. Kinematic | Hierarchical | - | 34 | 0 | ||
Kinematic | DBSCAN | 46 | 2 | 821 | ||
Kinematic | DBSCAN | 2 | 21 | 477 | ||
Kinematic | Hierarchical | - | 221 | 147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olesen, K.V.; Boubekki, A.; Kampffmeyer, M.C.; Jenssen, R.; Christensen, A.N.; Hørlück, S.; Clemmensen, L.H. A Contextually Supported Abnormality Detector for Maritime Trajectories. J. Mar. Sci. Eng. 2023, 11, 2085. https://doi.org/10.3390/jmse11112085
Olesen KV, Boubekki A, Kampffmeyer MC, Jenssen R, Christensen AN, Hørlück S, Clemmensen LH. A Contextually Supported Abnormality Detector for Maritime Trajectories. Journal of Marine Science and Engineering. 2023; 11(11):2085. https://doi.org/10.3390/jmse11112085
Chicago/Turabian StyleOlesen, Kristoffer Vinther, Ahcène Boubekki, Michael C. Kampffmeyer, Robert Jenssen, Anders Nymark Christensen, Sune Hørlück, and Line H. Clemmensen. 2023. "A Contextually Supported Abnormality Detector for Maritime Trajectories" Journal of Marine Science and Engineering 11, no. 11: 2085. https://doi.org/10.3390/jmse11112085
APA StyleOlesen, K. V., Boubekki, A., Kampffmeyer, M. C., Jenssen, R., Christensen, A. N., Hørlück, S., & Clemmensen, L. H. (2023). A Contextually Supported Abnormality Detector for Maritime Trajectories. Journal of Marine Science and Engineering, 11(11), 2085. https://doi.org/10.3390/jmse11112085