Morphological Performance of Vegetated and Non-Vegetated Coastal Dunes with Rocky and Geotextile Tube Cores under Storm Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Beach-Dune Profile
2.3. Plant Propagation
2.4. Dunes with Core
2.5. Instrumentation
2.6. Experimental Program
2.7. Beach-Dune Profile Response and Wave Reflection
3. Results
3.1. Erosion Regime
3.2. Dune Erosion
3.3. Coastline Displacement
3.4. Wave Reflection
4. Discussion
4.1. The Effect of Plants in Abating Erosion
4.2. The Performance of a Rocky versus a Geotextile Core
4.3. Caveats of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-Based Coastal Defence in the Face of Global Change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The Role of Ecosystems in Coastal Protection: Adapting to Climate Change and Coastal Hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Martínez, M.L.; Silva, R.; López-Portillo, J.; Feagin, R.A.; Martínez, E. Coastal Ecosystems as an Ecological Membrane. J. Coast. Res. 2020, 95, 97–101. [Google Scholar] [CrossRef]
- Sallenger, A.H., Jr. Storm Impact Scale for Barrier Islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Chávez, V.; Lithgow, D.; Losada, M.; Silva, R. Coastal Green Infrastructure to Mitigate Coastal Squeeze. J. Infrastruct. Preserv. Resil. 2021, 2, 7. [Google Scholar] [CrossRef]
- Feagin, R.A. Artificial Dunes Created to Protect Property on Galveston Island, Texas: The Lessons Learned. Ecol. Restor. 2005, 23, 89–94. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Coastal Dunes with Resistant Cores. J. Coast. Conserv. 2019, 23, 227–237. [Google Scholar] [CrossRef]
- van Rijn, L.C. Prediction of Dune Erosion Due to Storms. Coast. Eng. 2009, 56, 441–457. [Google Scholar] [CrossRef]
- Kobayashi, N.; Buck, M.; Payo, A.; Johnson, B.D. Berm and Dune Erosion during a Storm. J. Waterw. Port Coast. Ocean Eng. 2009, 135, 1–10. [Google Scholar] [CrossRef]
- Figlus, J.; Kobayashi, N.; Gralher, C.; Iranzo, V. Wave Overtopping and Overwash of Dunes. J. Waterw. Port Coast. Ocean Eng. 2011, 137, 26–33. [Google Scholar] [CrossRef]
- van Gent, M.R.A.; van Thiel de Vries, J.S.M.; Coeveld, E.M.; de Vroeg, J.H.; van de Graaff, J. Large-Scale Dune Erosion Tests to Study the Influence of Wave Periods. Coast. Eng. 2008, 55, 1041–1051. [Google Scholar] [CrossRef]
- van Thiel de Vries, J.S.M.; van Gent, M.R.A.; Walstra, D.J.R.; Reniers, A.J.H.M. Analysis of Dune Erosion Processes in Large-Scale Flume Experiments. Coast. Eng. 2008, 55, 1028–1040. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Tomasicchio, G.R.; Musci, F.; Ricca, A. Dune Erosion Physical, Analytical and Numerical Modelling. In Proceedings of the 33rd Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012. [Google Scholar]
- Kobayashi, N.; Gralher, C.; Do, K. Effects of Woody Plants on Dune Erosion and Overwash. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 466–472. [Google Scholar] [CrossRef]
- Sigren, J.M.; Figlus, J.; Armitage, A.R. Coastal Sand Dunes and Dune Vegetation: Restoration, Erosion, and Storm Protection. Shore Beach 2014, 82, 5–12. [Google Scholar]
- Figlus, J.; Sigren, J.M.; Power, M.J.; Armitage, A.R. Physical Model Experiment Investigating Interactions between Different Dune Vegetation and Morphology Changes under Wave Impact. Proc. Coast. Dyn. 2017, 59, 470–480. [Google Scholar]
- Sigren, J.M.; Figlus, J.; Highfield, W.; Feagin, R.A.; Armitage, A.R. The Effects of Coastal Dune Volume and Vegetation on Storm-Induced Property Damage: Analysis from Hurricane Ike. J. Coast. Res. 2018, 34, 164–173. [Google Scholar] [CrossRef]
- De Battisti, D.; Griffin, J.N. Below-Ground Biomass of Plants, with a Key Contribution of Buried Shoots, Increases Foredune Resistance to Wave Swash. Ann. Bot. 2020, 125, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Bryant, D.B.; Anderson Bryant, M.; Sharp, J.A.; Bell, G.L.; Moore, C. The Response of Vegetated Dunes to Wave Attack. Coast. Eng. 2019, 152, 103506. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Odériz, I.; Mendoza, E.; Feagin, R.A. Response of Vegetated Dune-Beach Systems to Storm Conditions. Coast. Eng. 2016, 109, 53–62. [Google Scholar] [CrossRef]
- Figlus, J.; Sigren, J.M.; Feagin, R.A.; Armitage, A.R. The Unique Ability of Fine Roots to Reduce Vegetated Coastal Dune Erosion during Wave Collision. Front. Built Environ. 2022, 8, 904837. [Google Scholar] [CrossRef]
- Mendoza, E.; Odériz, I.; Martínez, M.L.; Silva, R. Measurements and Modelling of Small Scale Processes of Vegetation Preventing Dune Erosion. J. Coast. Res. 2017, 77, 19–27. [Google Scholar] [CrossRef]
- Feagin, R.A.; Innocenti, R.A.; Bond, H.; Wengrove, M.; Huff, T.P.; Lomonaco, P.; Tsai, B.; Puleo, J.; Pontiki, M.; Figlus, J.; et al. Does Vegetation Accelerate Coastal Dune Erosion during Extreme Events? Sci. Adv. 2023, 9, eadg7135. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, R.A.; Rusty, A.F.; Charbonneau, B.; Figlus, J.; Lomonaco, P.; Wengrove, M.; Puleo, J.; Huff, T.P.; Rafati, F.; Hsu, T.; et al. The Effects of Plant Structure and Flow Properties on the Physical Response of Coastal Dune Plants to Wind and Wave Run-Up. Estuar. Coast. Shelf Sci. 2021, 261, 107556. [Google Scholar] [CrossRef]
- Charbonneau, B.R.; Wootton, L.S.; Wnek, J.P.; Langley, J.A.; Posner, M.A. A Species Effect on Storm Erosion: Invasive Sedge Stabilized Dunes More than Native Grass during Hurricane Sandy. J. Appl. Ecol. 2017, 54, 1385–1394. [Google Scholar] [CrossRef]
- Bezuijen, A.; Vastenburg, E.W. Geosystems: Design Rules and Applications; Bezuijen, A., Vastenburg, E.W., Eds.; CRC Press: Leiden, The Netherlands, 2012. [Google Scholar]
- Harris, M.E.; Ellis, J.T. A Holistic Approach to Evaluating Dune Cores. J. Coast. Conserv. 2020, 24, 42. [Google Scholar] [CrossRef]
- Tsai, C.-P.; Chen, H.-B.; Huang, M.-J. Wave Shoaling on Steep Slopes and Breaking Criteria. In Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26 May 2002. [Google Scholar]
- Gibeaut, J.C.; Hepner, T.L.; Waldinger, R.; Andrews, J.R.; Smyth, R.C.; Gutierrez, R. Geotubes for Temporary Erosion Control and Storm Surge Protection along Gulf of Mexico Shoreline of Texas. In Proceedings of the 13th Biennal Coastal Zone Conference; The University of Texas: Austin, TX, USA, 2001; Volume 13, p. 17. [Google Scholar]
- do Carmo, J.A.; Reis, C.S.; Freitas, H. Working with Nature by Protecting Sand Dunes: Lessons Learned. J. Coast. Res. 2010, 26, 1068–1078. [Google Scholar] [CrossRef]
- Rios-Soberanis, C.R.; Rodriguez-Laviada, J.; Pérez-Pacheco, E. Artificial Weathering Analysis and Mechanical Behavior of Geotextiles Used for Coast Erosion Control and Beach Restoration. Adv. Mat. Res. 2015, 1101, 361–367. [Google Scholar] [CrossRef]
- Odériz, I.; Knöchelmann, N.; Silva, R.; Feagin, R.A.; Martínez, M.L.; Mendoza, E. Reinforcement of Vegetated and Unvegetated Dunes by a Rocky Core: A Viable Alternative for Dissipating Waves and Providing Protection? Coast. Eng. 2020, 158, 103675. [Google Scholar] [CrossRef]
- Devall, M.S. The Biological Flora of Coastal Dunes and Wetlands. 2. Ipomoea pes-caprae (L.) Roth. J. Coast. Res. 1992, 8, 442–456. [Google Scholar]
- Baquerizo, A. Reflexión de Oleaje En Playas. Métodos de Evaluación y de Predicción; Universidad de Cantabria: Santander, Spain, 1995. [Google Scholar]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Charbonneau, B.R.; Wnek, J.P.; Langley, J.A.; Lee, G.; Balsamo, R.A. Above vs. Belowground Plant Biomass along a Barrier Island: Implications for Dune Stabilization. J. Environ. Manag. 2016, 182, 126–133. [Google Scholar] [CrossRef]
- Feagin, R.A.; Furman, M.; Salgado, K.; Martínez, M.L.; Innocenti, R.A.; Eubanks, K.; Figlus, J.; Huff, T.P.; Sigren, J.M.; Silva, R. The Role of Beach and Sand Dune Vegetation in Mediating Wave Run up Erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Feagin, R. Foredune Restoration Before and After Hurricanes: Inevitable Destruction, Certain Reconstruction. In Restoration of Coastal Dunes; Martínez, M.L., Gallego-Fernández, J.B., Hesp, P.A., Eds.; Springer: New York, NY, USA, 2013; pp. 93–106. [Google Scholar]
- Bai, X.; Li, F.; Ma, L.; Li, C. Weathering of Geotextiles under Ultraviolet Exposure: A Neglected Source of Microfibers from Coastal Reclamation. Sci. Total Environ. 2022, 804, 150168. [Google Scholar] [CrossRef] [PubMed]
Experiment | Storm Condition | Plant Density | Number of Plants | Core | ID | Hs (m) | Tp (s) | Duration (s) |
---|---|---|---|---|---|---|---|---|
Experiment 1 (plant densities) | S1 | N | 0 | - | S1N | 0.1 | 1.118 | 900 |
L | 6 | - | S1L | 0.1 | 1.118 | 900 | ||
M | 10 | - | S1M | 0.1 | 1.118 | 900 | ||
H | 15 | - | S1H | 0.1 | 1.118 | 900 | ||
S2 | N | 0 | - | S2N | 0.1 | 1.5652 | 900 | |
L | 6 | - | S2L | 0.1 | 1.5652 | 900 | ||
M | 10 | - | S2M | 0.1 | 1.5652 | 900 | ||
H | 15 | - | S2H | 0.1 | 1.5652 | 900 | ||
S3 | N | 0 | - | S3N | 0.15 | 2.012 | 240 | |
L | 6 | - | S3L | 0.15 | 2.012 | 240 | ||
M | 10 | - | S3M | 0.15 | 2.012 | 240 | ||
H | 15 | - | S3H | 0.15 | 2.012 | 240 | ||
Plant location | Rocky | |||||||
Experiment 2 (rocky core and plant position) | S1 | VN | 0 | R | S1VNR | 0.082 | 1.565 | 900 |
VT | 10 | R | S1VTR | 0.088 | 1.565 | 900 | ||
VL | 10 | R | S1VLR | 0.094 | 1.565 | 900 | ||
S2 | VN | 0 | R | S2VNR | 0.082 | 1.789 | 900 | |
VT | 10 | R | S2VTR | 0.085 | 1.789 | 900 | ||
VL | 10 | R | S2VLR | 0.082 | 1.789 | 900 | ||
S3 | VN | 0 | R | S3VNR | 0.98 | 2.012 | 522–718 | |
VT | 10 | R | S3VTR | 0.083 | 2.012 | 522–718 | ||
VL | 10 | R | S3VLR | 0.082 | 2.012 | 522–718 | ||
S1 | VN | 0 | - | S1VN | 0.082 | 1.565 | 900 | |
VT | 12 | - | S1VT | 0.088 | 1.565 | 900 | ||
VL | 12 | - | S1VL | 0.094 | 1.565 | 900 | ||
S2 | VN | 0 | - | S2VN | 0.082 | 1.789 | 900 | |
VT | 12 | - | S2VT | 0.085 | 1.789 | 900 | ||
VL | 12 | - | S2VL | 0.082 | 1.789 | 900 | ||
S3 | VN | 0 | - | S3VN | 0.98 | 2.012 | 522–718 | |
VT | 12 | - | S3VT | 0.083 | 2.012 | 522–718 | ||
VL | 12 | S3VL | 0.082 | 2.012 | 522–718 | |||
Plant density | Geotextile | |||||||
Experiment 3 (geotextile core) | S1 | N | 0 | G | S1G | 0.1 | 1.565 | 900 |
H | 12 | G | S1GP | 0.1 | 1.565 | 900 | ||
H | 12 | - | S1P | 0.1 | 1.565 | 900 | ||
S2 | N | 0 | G | S2G | 0.1 | 1.788 | 900 | |
H | 12 | G | S2GP | 0.1 | 1.788 | 900 | ||
H | 12 | - | S2P | 0.1 | 1.788 | 900 | ||
S3 | N | 0 | G | S3G | 0.1 | 2.012 | 240 | |
H | 12 | G | S3GP | 0.1 | 2.012 | 240 | ||
H | 12 | - | S3P | 0.1 | 2.012 | 240 |
Experiment | Dune Condition (ID) | Dune Initial Volume (m3) | ID | Post-Storm Volume (m3) | Sand Erosion (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Density | S1 | S2 | S3 | S1 | S2 | S3 | ||||
Experiment 1 (plant densities) | None (N) | 0.0565 | N | 0.0543 | 0.0516 | 0.0504 | 3.8392 | 8.6098 | 10.7669 | |
Low (L) | L | 0.0544 | 0.0541 | 0.0527 | 3.8045 | 4.3054 | 6.7065 | |||
Medium (M) | M | 0.0542 | 0.0530 | 0.0526 | 4.1163 | 6.2201 | 6.8641 | |||
High (H) | H | 0.0551 | 0.0540 | 0.0534 | 2.5320 | 4.3440 | 5.4364 | |||
Experiment 2 (rocky core and plant position) | Plant location | Structure | ||||||||
None (VN) | Rocky | 0.0662 | VNR | 0.0605 | 0.0581 | 0.0569 | 8.6339 | 12.2139 | 13.9741 | |
Top (VT) | Rocky | VTR | 0.0578 | 0.0548 | 0.0559 | 12.6614 | 17.1962 | 15.5218 | ||
Landward (VL) | Rocky | VLR | 0.0577 | 0.0558 | 0.0533 | 12.7957 | 15.7157 | 19.5531 | ||
None (VN) | No structure | VN | 0.0601 | 0.0577 | 0.0541 | 9.2306 | 12.8404 | 18.2851 | ||
Top (VT) | No structure | VT | 0.0557 | 0.0534 | 0.0503 | 15.8537 | 19.3181 | 23.9834 | ||
Landward (VL) | No structure | VL | 0.0561 | 0.0483 | 0.0492 | 15.2048 | 27.0898 | 25.6653 | ||
Experiment 3 (geotextile core) | Plant density | Structure | ||||||||
None | Geotextile | 0.0588 | G | 0.0514 | 0.0514 | 0.0560 | 12.5861 | 12.6029 | 4.8104 | |
High | Geotextile | GP | 0.0557 | 0.0545 | 0.0499 | 5.2806 | 7.3967 | 15.1220 | ||
High | No structure | P | 0.0563 | 0.0558 | 0.0518 | 4.2730 | 5.1631 | 11.9143 |
Experiment | Dune Condition (ID) | Dune Initial Volume (m3) | ID | Post-Storm Volume (m3) | Sand Erosion (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Density | S1 | S2 | S3 | S1 | S2 | S3 | ||||
Experiment 1 (plant densities) | None (N) | 0.0700 | N | 0.0679 | 0.0652 | 0.0687 | 3.0071 | 6.8985 | 1.9265 | |
Low (L) | L | 0.0678 | 0.0676 | 0.0663 | 3.1389 | 3.4111 | 5.3135 | |||
Medium (M) | M | 0.0676 | 0.0665 | 0.0658 | 3.3903 | 4.9558 | 5.9992 | |||
High (H) | H | 0.0686 | 0.0676 | 0.0669 | 2.0567 | 3.4446 | 4.4402 | |||
Experiment 2 (rocky core and plant position) | Plant location | Structure | ||||||||
None (VN) | Rocky | 0.0838 | VNR | 0.0779 | 0.0756 | 0.0745 | 7.0831 | 9.7463 | 11.1397 | |
Top (VT) | Rocky | VTR | 0.0749 | 0.0721 | 0.0739 | 10.6102 | 13.9974 | 11.7996 | ||
Landward (VL) | Rocky | VLR | 0.0747 | 0.0731 | 0.0731 | 10.8400 | 12.8226 | 12.7379 | ||
None (VN) | No structure | VN | 0.0764 | 0.0742 | 0.0740 | 8.8094 | 11.4072 | 11.7407 | ||
Top (VT) | No structure | VT | 0.0719 | 0.0729 | 0.0707 | 14.2095 | 12.9926 | 15.6140 | ||
Landward (VL) | No structure | VR | 0.0749 | 0.0685 | 0.0690 | 10.6698 | 18.2425 | 17.6968 | ||
Experiment 3 (geotextile core) | Plant density | Structure | ||||||||
None | Geotextile | 0.0722 | G | 0.0658 | 0.0647 | 0.0698 | 8.8682 | 10.3591 | 3.3289 | |
High | Geotextile | GP | 0.0689 | 0.0677 | 0.0645 | 4.5873 | 6.2832 | 10.6873 | ||
High | No structure | P | 0.0702 | 0.0692 | 0.0653 | 2.7271 | 4.1086 | 9.5248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maximiliano-Cordova, C.; Silva, R.; Mendoza, E.; Chávez, V.; Martínez, M.L.; Feagin, R.A. Morphological Performance of Vegetated and Non-Vegetated Coastal Dunes with Rocky and Geotextile Tube Cores under Storm Conditions. J. Mar. Sci. Eng. 2023, 11, 2061. https://doi.org/10.3390/jmse11112061
Maximiliano-Cordova C, Silva R, Mendoza E, Chávez V, Martínez ML, Feagin RA. Morphological Performance of Vegetated and Non-Vegetated Coastal Dunes with Rocky and Geotextile Tube Cores under Storm Conditions. Journal of Marine Science and Engineering. 2023; 11(11):2061. https://doi.org/10.3390/jmse11112061
Chicago/Turabian StyleMaximiliano-Cordova, Carmelo, Rodolfo Silva, Edgar Mendoza, Valeria Chávez, M. Luisa Martínez, and Rusty A. Feagin. 2023. "Morphological Performance of Vegetated and Non-Vegetated Coastal Dunes with Rocky and Geotextile Tube Cores under Storm Conditions" Journal of Marine Science and Engineering 11, no. 11: 2061. https://doi.org/10.3390/jmse11112061