Coastal Morphodynamics and Climate Change: A Review of Recent Advances
Abstract
:1. Introduction
2. Coastal Inundation and Climate Change
3. Tipping Points in Coastal Systems
4. Coastal Erosion and Shoreline Transgression
5. Continental Shelf Processes
6. Low Elevation Coastal Zones (LECZ)
7. Wetlands
8. Estuaries, Bays, and Tidal Waterways
9. Deltaic Coasts
10. Arctic Coasts
11. Coral Reefs and Reef Islands
12. Built and Natural Protective Infrastructure
13. Conclusions and Prognosis for Future Advances
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, L.D.; Thom, B.G. Coastal depositional landforms: A morphodynamic approach. Prog. Phys. Geogr. 1977, 1, 412–459. [Google Scholar] [CrossRef]
- Cowell, P.J.; Thom, B.G. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Carter, R.W.G., Woodroffe, C.D., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 33–86. [Google Scholar]
- Wright, L.D. Morphodynamics of Inner Continental Shelves; CRC Press: Boca Raton, FL, USA, 1995; p. 241. [Google Scholar]
- Woodroffe, C.D. Coasts—Form and Processes; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Sutherland, J. Coastal Morphodynamics and Society. 2008. Available online: http://www.coastalwiki.org/wiki/Coastal_morphodynamics_and_society (accessed on 30 July 2023).
- Barman, N.K.; Chatterjee, S.; Paul, A.K. Coastal Morphodynamics: Integrated Spatial Modeling on the Deltaic Balasore Coast, India; Springer Briefs in Geography; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-33574-2. [Google Scholar]
- Friedrichs, C.T. Tidal Flat Morphodynamics: A Synthesis. Treatise Estuar. Coast. Sci. 2011, 3, 137–170. [Google Scholar]
- Wright, L.D.; Syvitski, J.; Nichols, C.R.; Zinnert, J. Coastal Morphodynamics and Ecosystem Dynamics. In Tomorrow’s Coasts: Complex and Impermanent; Wright, L.D., Nichols, C.R., Eds.; Coastal Research Library Series; Springer: Cham, Switzerland, 2019; pp. 69–84. [Google Scholar]
- Jackson, D.W.T.; Short, A.D. Sandy Beach Morphodynamics; Elsevier: Amsterdam, The Netherlands, 2020; p. 817. [Google Scholar]
- Zen, S.; Perona, P.; Medina-Lopez, E. River delta eco-morphodynamics under changing scenarios: The case of Lake Turkana, Kenya. Geomorphology 2023, 428, 108640. [Google Scholar] [CrossRef]
- Barnard, P.L.; Dugan, J.E.; Page, H.M.; Wood, N.; Hart, J.; Cayan, D.; Erikson, L.; Hubbard, D.; Myers, M.; Melack, J.; et al. Multiple climate change-driven tipping points for coastal systems. Sci. Rep. 2021, 11, 15560. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; DeAngelo, B.; Doherty, S.; Hayhoe, K.; Horton, R.; Kossin, J.P.; Taylor, P.C.; Waple, A.M.; et al. Executive Summary of the Climate Science Special Report: Fourth National Climate Assessment, Volume I; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; p. 26. [Google Scholar]
- U.S. Global Change Research Program. Our Changing Planet: The U.S. Global Change Research Program for Fiscal Year 2023; U.S. Global Change Research Program: Washington, DC, USA, 2023. [Google Scholar]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.; Joeri Rogelj, J.; et al. Technical Summary. In Climate Change: The Physical Science Basis. Contribution of Working Group 14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Bondre, N.; Gaffney, O. (Eds.) IGBP Annual Report 2014/2015; IGBP Secretariat, The Royal Swedish Academy of Sciences: Stockholm, Sweden, 2015. [Google Scholar]
- Janssen, M. Use of complex adaptive systems for modeling global change. Ecosystems 1998, 1, 457–463. [Google Scholar] [CrossRef]
- Nicolis, G.; Prigogine, I. Exploring Complexity; Freeman &, Co.: New York, NY, USA, 1989; p. 313. [Google Scholar]
- Hendrickx, G.G.; Antolínez, J.A.A.; Herman, P.M.J. Predicting the response of complex systems for coastal management. Coast. Eng. 2023, 182, 104289. [Google Scholar] [CrossRef]
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines; NOAA Technical Report NOS 01; National Oceanic and Atmospheric Administration, National Ocean Service: Silver Spring, MD, USA, 2022; p. 111. Available online: https://oceanservice.noaa.gov/hazards/sealevelrise/noaa–nos-techrpt01-global-regional-SLR-scenarios-US.pdf (accessed on 30 July 2023).
- Ezer, T.; Atkinson, L.P. Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream.; the North Atlantic Oscillations. Earth’s Future 2014, 2, 362–382. [Google Scholar] [CrossRef]
- Ditlevsen, P.; Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 2023, 14, 4254. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Callaghan, D.P.; Li, F.; Wainwright, D.J.; Duong, T.M. Assessing coastline recession for adaptation planning: Sea level rise versus storm erosion. Sci. Rep. 2023, 13, 8286. [Google Scholar] [CrossRef]
- Lukasiewicz, A.; O’Donnell, T. Complex Disasters: Compounding, Cascading, and Protracted; Lukasiewicz, A., O’Donnell, T., Eds.; Palgrave Macmillan: Singapore, 2022. [Google Scholar]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Shen, Y.; Morsy, M.M.; Huxley, C.; Tahvildari, N.; Goodall, J.L. Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. J. Hydrol. 2019, 579, 124159. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Chen, W.-B.; Liu, W.-C. Modeling flood inundation induced by river flow and storm surges over a river basin. Water 2014, 6, 3182–3199. [Google Scholar] [CrossRef]
- Balaguru, K.; Xu, W.; Chang, C.C.; Leung, L.R.; Judi, D.R.; Hagos, S.M.; Wehner, M.F.; Kossin, J.P.; Ting, M. Increased U.S. coastal hurricane risk under climate change. Sci. Adv. 2023, 9, eadf0259. [Google Scholar] [CrossRef] [PubMed]
- Luettich, R.A., Jr.; Wright, L.D.; Signell, R.; Friedrichs, C.; Friedrichs, M.; Harding, J.; Fennel, K.; Howlett, E.; Graves, S.; Smith, E.; et al. Introduction to special section on the U.S. IOOS Coastal and Ocean Modeling Testbed. J. Geophys. Res. Ocean. 2013, 118, 6319–6328. [Google Scholar] [CrossRef]
- NOAA’s Updated P-Surge Model. Available online: https://slosh.nws.noaa.gov/psurge/index.php?S=Psurgetest22023&Adv (accessed on 10 August 2023).
- Wright, L.D.; Nichols, C.R. (Eds.) . Tomorrow’s Coasts: Complex and Impermanent; Coastal Research Library Series; Springer: Cham, Switzerland, 2019; p. 374. [Google Scholar]
- Nichols, C.R.; Wright, L.D. The evolution and outcomes of a collaborative testbed for predicting coastal threats. J. Mar. Sci. Eng. 2020, 8, 612. [Google Scholar] [CrossRef]
- Luettich, R.A., Jr.; Wright, L.D.; Nichols, C.R.; Baltes, R.; Friedrichs, M.A.M.; Kurapov, A.; van der Westhuysen, A.; Fennel, K.; Howlett, E. A test bed for coastal and ocean modeling. Eos 2017, 98. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries; Report 1, Theory and Methodology of ADCIRC-2DD1 and ADCIRC-3DL; Coastal Engineering Research Center: Miami, FL, USA, 1992; 48p. [Google Scholar]
- Camelo, J.; Mayo, T.L.; Gutmann, E.D. Projected Climate Change Impacts on Hurricane Storm Surge Inundation in the Coastal United States. Front. Built Environ. 2020, 6, 588049. [Google Scholar] [CrossRef]
- Goodwin, I.; Ribó, M.; Mortlock, T. Coastal sediment compartments, wave climate and centennial-scale sediment budget. In Sandy Beach Morphodynamics; Derek, W.T., Jackson, A., Short, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 615–640. ISBN 9780081029275. Available online: https://www.sciencedirect.com/science/article/pii/B9780081029275000254 (accessed on 20 August 2023).
- McKay, D.; Staal, A.; Abrams, J.; Winkelman, R.; Sakschewski, B.; Loriani, S.; Fetzer, I.; Cornell, S.; Rockstrom, J.; Lenton, T. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 2022, 377, eabn7950. [Google Scholar] [CrossRef]
- Lenton, T.M. Early warning of climate tipping points. Nat. Clim. Chang. 2011, 1, 201–210. [Google Scholar] [CrossRef]
- Turner, R.E.; Kearney, M.S.; Parkinson, R.W. Sea-level rise tipping point of delta survival. J. Coast. Res. 2018, 34, 470–474. [Google Scholar] [CrossRef]
- Wright, L.D.; Syvitski, J.; Nichols, C.R. Complex Intersections of Seas, Lands, Rivers, and People. In Tomorrow’s Coasts: Complex and Impermanent; Wright, L.D., Nichols, C.R., Eds.; Coastal Research Library Series; Springer: Cham, Switzerland, 2019; pp. 59–68. [Google Scholar]
- Morris, J.T.; Cahoon, D.R.; Callaway, J.C.; Craft, C.; Neubauer, S.C.; Weston, N.B. Marsh equilibrium theory: Implications for responses to rising sea level. In Salt Marshes: Function, Dynamics, and Stresses; FitzGerald, D.M., Hughes, Z.J., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 157–177. [Google Scholar]
- Allen, T.; Behr, J.; Bukvic, A.; Calder, R.S.D.; Caruson, K.; Connor, C.; D’Elia, C.; Dismukes, D.; Ersing, R.; Franklin, R.; et al. Anticipating and Adapting to the Future Impacts of Climate Change on the Health, Security and Welfare of Low Elevation Coastal Zone (LECZ) Communities in Southeastern USA. J. Mar. Sci. Eng. 2021, 9, 1196. [Google Scholar] [CrossRef]
- Cowell, P.J.; Kinsela, M.A. Shoreface controls on barrier evolution and shoreline change. In Barrier Dynamics, Response to Changing, Climate; Moore, L.J., Murray, B.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Zarillo, G.A. Inter-annual sea level change and transgression along a barrier Island coast. Front. Environ. Sci. 2023, 11, 1107458. [Google Scholar] [CrossRef]
- Boers, N. Observation-based early warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 2021, 11, 680–688. [Google Scholar] [CrossRef]
- Hauer, M.E.; Fussell, E.; Mueller, V.; Burkett, M.; Call, M.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- Reimann, L.; Jones, B.; Bieker, N.; Wolff, C.; Aerts, J.C.; Vafeidis, A.T. Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise. Nat. Commun. 2023, 14, 2630. [Google Scholar] [CrossRef] [PubMed]
- Fruergaard, M.; Møller, I.; Johannessen, P.; Nielsen, L.H.; Andersen, T.J.; Nielsen, L.; Sander, L.; Pejrup, M. Stratigraphy, evolution, and controls of a Holocene transgressive-regressive barrier island under changing sea-level: Danish North Sea coast. J. Sediment. Res. 2015, 85, 820–844. [Google Scholar] [CrossRef]
- Hein, C.J.; FitzGerald, D.M.; deMenezes, J.T.; Cleary, W.J.; Klein, A.; Albernaz, M. Coastal response to late-stage transgression and sea-level highstand. GSA Bull. 2014, 26, 615. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P.; Rennie, A.; Brooks, S.; Spencer, T. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev. 2020, 158–189. [Google Scholar] [CrossRef]
- Shadrick, J.R.; Rood, D.H.; Hurst, M.D.; Piggotti, M.; Hebditch, B.; Seal, A.; Wlicken, K. Sea-level rise will likely accelerate rock coast cliff retreat rates. Nat. Commun. 2022, 13, 7005. [Google Scholar] [CrossRef]
- Short, A.D. Australian beach systems: Are they at risk to climate change? Ocean. Coast. Manag. 2022, 224, 106180. [Google Scholar] [CrossRef]
- McLean, R.; Thom, B.; Shen, J.; Oliver, T. 50 years of beach–foredune change on the southeastern coast of Australia: Bengello Beach, Moruya, NSW, 1972–2022. Geomorphology 2023, 439, 108850. [Google Scholar] [CrossRef]
- Ghanavati, M.; Young, I.; Kirezci, E.; Ranasinghe, R.; Duong, T.; Arjen, P.; Luijendijk, A. An assessment of whether long-term global changes in waves and storm surges have impacted global coastlines. Sci. Rep. 2023, 13, 11549. [Google Scholar] [CrossRef] [PubMed]
- Vos, K.; Harley, M.D.; Turner, I.L.; Splinter, K. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 2023, 16, 140–146. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Heijkers, L.G.H.; Ruessink, G. Barrier breaching versus overwash depositon. Predicting The morphologic impact of Storms on coastal barriers. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006066. [Google Scholar] [CrossRef]
- Zinnert, J.C.; Via, S.M.; Nettleton, B.P.; Tuley, P.A.; Moore, L.J.; Stallins, J.A. Connectivity in coastal systems: Barrier Island vegetation influences upland migration in a changing climate. Glob. Chang. Biol. 2019, 25, 2419–2430. [Google Scholar] [CrossRef]
- Wright, L.D.; Syvitski, J.; Nichols, C.R. Coastal Complexity and Predictions of Change. In Tomorrow’s Coasts: Complex and Impermanent; Wright, L.D., Nichols, C.R., Eds.; Coastal Research Library Series; Springer: Cham, Switzerland, 2019; pp. 3–23. [Google Scholar]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Wright, L.D. Recent advances in understanding continental shelf sediment transport. Int. Assoc. Sedimentologists. Spec. Publ. 2012, 44, 159–172. [Google Scholar]
- Laruelle, G.; Cai, W.-J.; Hu, X.; Gruber, N.; Mackenzie, F.; Regnier, P. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 2018, 9, 454. [Google Scholar] [CrossRef]
- Kitchel, Z.J.; Conrad, H.M.; Selden, R.L.; Pinsky, M.L. The role of continental shelf bathymetry in shaping marine range shifts in the face of climate change. Glob. Change Biol. 2022, 28, 5185–5199. [Google Scholar] [CrossRef]
- Wright, L.D.; Caruson, K.; D’Elia, C.; Draayer, J.; Nichols, C.R.; Weiss, R.; Zarillo, G. Assessing and Planning for the Impacts of Storms, Flooding and Sea Level Rise on Vulnerable Gulf of Mexico Coastal Communities: A White Paper; Global Oceans: Singapore; U.S. Gulf Coast: Biloxi, MS, USA, 2020; pp. 1–6. [Google Scholar]
- Chérubin, L.M.; Burgman, R.J. Effects of climate change and water management on West Florida Shelf’s dynamics. Bull. Mar. Sci. 2022, 98, 393–418. [Google Scholar] [CrossRef]
- Kinsela, M.A.; Hanslow, D.J.; Carvalho, R.C.; Kinsela, M.; Hanslow, D.J.; Carvalho, R.C.; Linklater, M.; Ingleton, T.; Morris, B.; Allen, K.; et al. Mapping the Shoreface of Coastal Sediment Compartments to Improve Shoreline Change Forecasts in New South Wales, Australia. Estuaries Coasts 2022, 45, 1143–1169. [Google Scholar] [CrossRef]
- Magnan, A.K.; Oppenheimer, M.; Garschagen, M.; Buchanan, M.; Duvat, V.; Forbes, D.; Ford, J.; Lambert, E.; Petzold, J.; Renaud, G.; et al. Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Sci. Rep. 2022, 12, 10677. [Google Scholar] [CrossRef] [PubMed]
- Tagtachian, D.; Balk, D. Uneven vulnerability: Characterizing population composition and change in the low elevation coastal zone in the United States with a climate justice lens, 1990–2020. Front. Environ. Sci. 2023, 11, 1111856. [Google Scholar] [CrossRef]
- Mitchell, M.; Hendricks, J.; Schatt, D. Road network analyses elucidate hidden road flooding impacts under accelerating sea level rise. Front. Environ. Sci. 2023, 11, 1083282. [Google Scholar] [CrossRef]
- Saintilan, N.; Horton, B.; Törnqvist, T.E.; Ashe, E.; Khan, N.; Schuerch, M.; Perry, C.; Kopp, R.; Garner, G.; Murray, N.; et al. Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C. Nature 2023, 621, 112–119. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Morris, J.T.; Drexler, J.Z.; Vaughn, L.J.; Robinson, A.H. An assessment of future tidal marsh resilience in the San Francisco Estuary through modeling and quantifiable metrics of sustainability. Front. Environ. Sci. 2022, 10, 1039143. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef]
- Schile, L.M.; Callaway, J.C.; Morris, J.T.; Stralberg, D.; Parker, V.T.; Kelly, M. Modeling tidal marsh distribution with Sea-Level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 2014, 9, e88760. [Google Scholar] [CrossRef]
- Saintilan, N.; Saintilan, N.; Kovalenko, K.E.; Guntenspergen, G.; Rogers, K.; Lynch, J.C.; Cahoon, D.R.; Lovelock, C.E.; Friess, D.A.; Ashe, E.; et al. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 2022, 377, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaque, A.; Myint, S.W.; Wang, C. Examining the ecosystem health and sustainability of the world’s largest mangrove forest using multi-temporal MODIS products. Sci. Total Environ. 2016, 569–570, 1241–1254. [Google Scholar] [CrossRef]
- Montgomery, M.; Bryan, K.R.; Coco, G. The role of mangroves in coastal flood protection: The importance of channelization. Cont. Shelf Res. 2022, 243, 104762. [Google Scholar] [CrossRef]
- Alam, E.; Momtaz, S.; Bhuiyan, H.U.; Baby, S.N. Climate change impacts on the coastal zones of Bangladesh: Perspectives on tropical cyclones, sea level rise, and social vulnerability. In Bangladesh I: Climate Change Impacts, Mitigation and Adaptation in Developing Countries; Islam, M., van Amstel, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 145–166. [Google Scholar] [CrossRef]
- Lovelock, C.; Cahoon, D.; Friess, D.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef]
- Kumbier, K.; Rogers, K.; Hughes, M.G.; Lal, K.K.; Mogensen, L.A.; Woodroffe, C.D. An Eco-Morphodynamic Modelling Approach to Estuarine Hydrodynamics & in Response to Sea-Level Rise. Front. Mar. Sci. 2022, 9, 860910. [Google Scholar] [CrossRef]
- Munñoz, D.F.; Moftakhari, H.; Kumar, M.; Moradkhani, H. Compound Effects of Flood Drivers, Sea Level Rise, and Dredging Protocols on Vessel Navigability and Wetland Inundation Dynamics. Front. Mar. Sci. 2022, 9, 906376. [Google Scholar] [CrossRef]
- Ghanbari, M.; Arabi, M.; Kao, S.-C.; Obeysekera, J.; Sweet, W. Climate change and changes in compound coastal-riverine flooding hazard along the U.S. coasts. Earth's Future 2021, 9, e2021EF002055. [Google Scholar] [CrossRef]
- Leuven, J.R.F.W.; Pierik, H.J.; Vegt, M.v.d.; Bouma, T.J.; Kleinhans, M.G. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide. Nat. Clim. Chang. 2019, 9, 986–992. [Google Scholar] [CrossRef]
- Khojasteh, D.; Chen, S.; Felder, S.; Heimhuber, V.; Glamore, W. Estuarine tidal range dynamics under rising sea levels. PLoS ONE 2021, 16, e0257538. [Google Scholar] [CrossRef]
- Reeve, D.E.; Karunarathna, H. On the prediction of long-term morphodynamic response of estuarine systems to sea level rise and human interference. Cont. Shelf Res. 2009, 29, 938–950. [Google Scholar] [CrossRef]
- Lee, S.B.; Ming, L.; Zhang, F. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. J. Geophys. Res. Ocean. 2017, 122, 3917–3938. [Google Scholar] [CrossRef]
- Phuah, T.L.-K.; Chang, Y.-C. Socioeconomic adaptation to geomorphological change: An empirical study in Cigu Lagoon, southwestern coast of Taiwan. Front. Environ. Sci. 2023, 10, 1091640. [Google Scholar] [CrossRef]
- Thom, B.; Hudson, J.; Dean-Jones, P. Estuary contexts and governance models in the new climate era, New South Wales, Australia. Front. Environ. Sci. 2023, 11, 1127839. [Google Scholar] [CrossRef]
- Wolanski, E.; Ducrotoy, J.-P. Estuaries of Australia in 2050 and beyond—A synthesis. In Estuaries of Australia in 2050 and Beyond; Springer: New York, NY, USA, 2014; pp. 1–13. [Google Scholar]
- Nicholls, R.J.; Adger, W.N.; Hutton, C.W.; Hanson, S.E. (Eds.) Deltas in the Anthropocene; Springer Nature: Cham, Switzerland, 2020; p. 282. [Google Scholar]
- Syvitski, J.; Anthony, E.; Saito, Y.; Z˘ainescu, F.; Day, J.; Bhattacharya, J.; Giosan, L. Large deltas, small deltas: Toward a more rigorous understanding of coastal marine deltas. Glob. Planet. Change 2022, 218, 103958. [Google Scholar] [CrossRef]
- Overeem, I.; Syvitski, J.P.M. Dynamics and Vulnerability of Delta Systems; LOICZ Reports & Studies No. 35; GKSS Research Center: Geesthacht, Germany, 2009; p. 54. [Google Scholar]
- Allison, M.; Yuill, B.; Toörnqvist, T.; Amelung, F.; Dixon, T.H.; Erkens, G.; Stuurman, R.; Jones, C.; Milne, G.; Steckler, M.; et al. Global risks and research priorities for coastal subsidence. Eos 2016, 97, 22–27. [Google Scholar] [CrossRef]
- Törnqvist, T.E. A river delta in transition. Nat. Sustain. 2023, 6, 617–618. [Google Scholar] [CrossRef]
- Coastal Protection and Restoration Authority of Louisiana (CPRA). Louisiana’s Comprehensive Master Plan for a Sustainable Coast; Coastal Protection and Restoration Authority of Louisiana: Baton Rouge, LA, USA, 2017; p. 172. [Google Scholar]
- Wright, L.D.; Wu, W. Pearl River Delta and Guangzhou (Canton) China. In Tomorrow’s Coasts: Complex and Impermanent; Coastal Research Library Series; Wright, L.D., Nichols, C.R., Eds.; Springer: Cham, Switzerland, 2019; pp. 193–205. [Google Scholar]
- Syvitski, J.P.M.; Kettner, A.J.; Hannon, M.T.; Hutton, E.W.H.; Overeem, I.; Brakenridge, G.R.; Day, J.; Vo, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Wang, J.; Muto, T.; Urata, K.; Sato, T.; Naruse, H. Morphodynamics of river deltas in response to different basin water depths: An experimental examination of the grade index model. Geophys. Res. Lett. 2019, 46, 5265–5273. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nording, K.; Hyvarinen, O.; Ruosteenoia, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Wendisch, M.; Bruckner, M.; Burrows, J.; Crewell, S.; Dethloff, K.; Ebell, K.; Lupkes, C.; Macke, A.; Notholt, J.; Quaas, J.; et al. Understanding causes and effects of rapid warming in the Arctic. Eos 2017, 98. [Google Scholar] [CrossRef]
- Arctic Monitoring and Assessment Program (AMAP). Snow, Water, Ice and Permafrost in the Arctic (SWIPA) Summary for Policy Makers; Arctic Monitoring and Assessment Program: Oslo, Norway, 2017; p. 268. [Google Scholar]
- Wright, L.D. The Alaskan Arctic Coast. In Tomorrow’s Coasts: Complex and Impermanent; Coastal Research Library Series; Wright, L.D., Nichols, C.R., Eds.; Springer: Cham, Switzerland, 2019; pp. 261–273. [Google Scholar]
- Douglas, D.C. Arctic Sea Ice Decline: Projected Changes in Timing and Extent of Sea Ice in the Bering and Chukchi Seas; U.S. Geological Survey Open-File Report 2010–1176; U.S. Geological Survey: Reston, VA, USA, 2010; p. 32. [Google Scholar]
- Overeem, I.; Anderson, R.S.; Wobus, C.W.; Clow, G.D.; Urban, F.E.; Matell, N. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 2011, 38, L17503. [Google Scholar] [CrossRef]
- Buzard, R.M.; Kinsman, N.E.M.; Maio, C.V.; Erikson, L.H.; Jones, B.M.; Anderson, S.; Glenn, R.J.T.; Overbeck, J.R. Barrier Island reconfiguration leads to rapid erosion and relocation of a rural Alaska community. J. Coast. Res. 2023, 39, 625–642. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Slater, A.G.; Tomas, R.A.; Holland, M.; Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett. 2008, 35, L11506. [Google Scholar] [CrossRef]
- Underwood, E. Why are Arctic rivers rising in winter? Eos 2017, 98. [Google Scholar] [CrossRef]
- Stepien, A.; Koivurova, T.; Gremsperger, A.; Niemi, H. Arctic Indigenous Peoples and the Challenge of Climate Change. In Arctic Marine Governance: Opportunities for Transatlantic Cooperation; Tedsen, E., Cavalieri, S., Kraemer, R., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Poppick, L. Engineering new foundations for a thawing Arctic. Eos 2017, 98. [Google Scholar] [CrossRef]
- Masselink, G.; Beetham, E.; Kench, P. Coral reef islands can accrete vertically in response to sea level rise. Sci. Adv. 2020, 6, eaay3656. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Webster, J.M. Coral reefs and sea-level change. Mar. Geol. 2014, 352, 248–267. [Google Scholar] [CrossRef]
- Kench, P.S.; Liang, C.; Ford, M.R.; Owen, S.; Aslam, M.; Ryan, E.; Turner, T.; Beetham, E.; Dickson, M.; Stephenson, W.; et al. Reef islands have continually adjusted to environmental change over the past two millennia. Nat. Commun. 2023, 14, 508. [Google Scholar] [CrossRef]
- Sheppard, C.; Dixon, D.J.; Gourlay, M.; Sheppard, A.; Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuar. Coast. Shelf Sci. 2005, 64, 223–234. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G.; et al. Global warming transforms coral reef assemblages. Nature 2018, 556, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Marzonie, M.R.; Bay, L.K.; Bourne, D.G.; Hoey, A.S.; Matthews, S.; Nielsen, J.J.V.; Harrison, H.B. The effects of marine heatwaves on acute heat tolerance in corals. Glob. Change Biol. 2023, 29, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Meteorology. 2016 Marine Heatwave on the Great Barrier Reef; Australian Bureau of Meteorology: St. Docklands, VIC, Australia, 2016; p. 2. [Google Scholar]
- Bay, L.K.; Gilmour, J.; Muir, B.; Hardisty, P. Management approaches to conserve Australia’s marine ecosystem under climate change. Science 2023, 3381, 631–636. [Google Scholar] [CrossRef]
- Abelson, A.; Reed, D.C.; Edgar, G.J.; Smith, C.S.; Kendrick, G.A.; Orth, R.J.; Airoldi, L.; Silliman, B.; Beck, M.W.; Krause, G.; et al. Challenges for Restoration of Coastal Marine Ecosystems in the Anthropocene. Front. Mar. Sci. 2020, 7, 544105. [Google Scholar] [CrossRef]
- Knowlton, N.; Grottoli, A.G.; Kleypas, J.; Obura, D.; Corcoran, E.; de Goeij, J.; Felis, T.; Harding, S.; Mayfield, A.; Miller, M.; et al. Rebuilding Coral Reefs: A Decadal Grand Challenge; International Coral Reef Society and Future Earth Coasts: Oakland, CA, USA, 2021. [Google Scholar] [CrossRef]
- Pelling, M.; Blackburn, S. (Eds.) . Megacities and the Coast: Risk, Resilience, and Transformation; Routledge: London, UK, 2013; Volume 248, Available online: https://www.routledge.com/books/details/9780415815123/ (accessed on 15 August 2023).
- Vorosmarty, C.J.; Melillo, J.M.; Wuebbles, D.J.; Jain, A.K.; Ando, A.W.; Chen, M.; Tuler, S.; Smith, R.; Kicklighter, D.; Corsi, F.; et al. Applying the framework to study climate-induced extremes on food, energy, and water systems (C-FEWS): The role of engineered and natural infrastructures, technology, and environmental management in the United States Northeast and Midwest. Front. Environ. Sci. 2023, 11, 1070144. [Google Scholar] [CrossRef]
- Burnett, J. Billions Spent on Flood Barriers, but New Orleans Still a ‘Fishbowl’. NPR. 2015. Available online: http://www.npr.org/2015/08/28/432059261/billions-spent-on-flood-barriers-but-new-orleans-still-a-fishbowl (accessed on 15 August 2023).
- Hemmerling, S.A.; DeMyers, C.; Parfait, J.; Pinñero, E.; Baustian, M.M.; Bregman, M.; Di Leonardo, D.; Esposito, C.; Georgiou, I.Y.; Grismore, A.; et al. A community-informed transdisciplinary approach to coastal restoration planning: Maximizing the social and ecological co-benefits of wetland creation in Port Fourchon, Louisiana, USA. Front. Environ. Sci. 2013, 11, 1105671. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.; Herman, P.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defense in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 3–913. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef]
- Calder, R.S.; Shi, C.; Mason, S.A.; Olander, L.P.; Borsuk, M.E. Forecasting ecosystem services to guide coastal wetland rehabilitation decisions. Ecosyst. Serv. 2019, 39, 101007. [Google Scholar] [CrossRef]
- Livingston, J.; Woiwode, N.; Bortman, M.; McAfee, S.; McLeod, K.; Newkirk, S.; Murdock, S. Natural Infrastructure to Mitigate Inundation and Coastal Degradation. In Tomorrow’s Coasts: Complex and Impermanent; Wright, L.D., Nichols, C.R., Eds.; Coastal Research Library, 27; Springer: Cham, Switzerland, 2019; pp. 167–189. [Google Scholar]
- Thom, B. Future challenges in beach management as contested spaces. Sandy Beach Morphodynamics; Jackson, D.W.T., Short, A.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 711–731. [Google Scholar]
- Hutton, N.S.; Allen, T.R. The role of traditional knowledge in coastal adaptation priorities: The Pamunkey Indian reservation. Water 2020, 12, 3548. [Google Scholar] [CrossRef]
- Matthews, V.; Vine, K.; Atkinson, A.-R.; Longman, J.; Lee, G.; Vardoulakis, S.; Mohamed, J. Justice, culture, and relationships: Australian Indigenous prescription for planetary health. Science 2023, 381, 636–641. [Google Scholar] [CrossRef]
- Ranasinghe, R. On the need for a new generation of coastal change models for the 21st century. Sci. Rep. 2020, 10, 2010. [Google Scholar] [CrossRef]
- Wright, L.D.; Thom, B.G. Promoting Resilience of Tomorrow’s Impermanent Coasts. In Tomorrow’s Coasts: Complex and Impermanent; Wright, L.D., Nichols, C.R., Eds.; Coastal Research Library Series; Springer: Cham, Switzerland, 2019; pp. 341–353. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, L.D.; Thom, B.G. Coastal Morphodynamics and Climate Change: A Review of Recent Advances. J. Mar. Sci. Eng. 2023, 11, 1997. https://doi.org/10.3390/jmse11101997
Wright LD, Thom BG. Coastal Morphodynamics and Climate Change: A Review of Recent Advances. Journal of Marine Science and Engineering. 2023; 11(10):1997. https://doi.org/10.3390/jmse11101997
Chicago/Turabian StyleWright, Lynn Donelson, and Bruce Graham Thom. 2023. "Coastal Morphodynamics and Climate Change: A Review of Recent Advances" Journal of Marine Science and Engineering 11, no. 10: 1997. https://doi.org/10.3390/jmse11101997
APA StyleWright, L. D., & Thom, B. G. (2023). Coastal Morphodynamics and Climate Change: A Review of Recent Advances. Journal of Marine Science and Engineering, 11(10), 1997. https://doi.org/10.3390/jmse11101997