Layout Optimization of a Tidal Current Turbine Array Based on Quantum Discrete Particle Swarm Algorithm
Abstract
:1. Introduction
2. The Optimization Framework
2.1. Underwater Terrain and Tidal Model
2.2. Analytical Wake Model
2.3. Wake Merging Schemes
2.4. Safe Distance Constraint
2.5. Sea Space Utilization Model
2.6. Cost Model
2.7. Objective Function
3. The QDPS Algorithm
3.1. The Quantum Discrete Particle Swarm (QDPS) Algorithm
3.2. The Improved Algorithm
4. Illustration
4.1. Computational Domain
4.2. Conformance Testing
4.3. Safe Distance
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraenkel, P.L. Tidal current energy technologies. Ibis 2006, 148, 145–151. [Google Scholar] [CrossRef]
- Bahaj, A.S. Generating electricity from the oceans. Renew. Sustain. Energy Rev. 2011, 15, 3399–3416. [Google Scholar] [CrossRef]
- Myers, L.E.; Bahaj, A.S. An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renew. Energy 2012, 37, 28–36. [Google Scholar] [CrossRef]
- Simon, H.; Anna, D.; Fraser, J. Meygen-Subsea Hub Decommissioning Programme; MeyGen Ltd.: Edinburgh, UK, 2020. [Google Scholar]
- Wu, Y.N.; Wu, G.W.; Wu, H. Islands Marine Renewable Energy Application Requirement and Discussion on Developing Proposal. Ocean Dev. Manag. 2017, 34, 39–44. [Google Scholar]
- Ammara, I.; Leclerc, C.; Masson, C. A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. J. Sol. Energy Eng. Trans. ASME 2002, 124, 345–356. [Google Scholar] [CrossRef]
- Myers, L.; Bahaj, A.S. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renew. Energy 2005, 30, 1713–1731. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. Generating Power from Tidal Currents. J. Waterw. Port Coast. Ocean Eng. 2004, 130, 114–118. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. Limits to tidal current power. Renew. Energy 2008, 33, 2485–2490. [Google Scholar] [CrossRef]
- Baker, N.F.; Stanley, A.P.J.; Thomas, J.J.; Ning, A.; Dykes, K. Best practices for wake model and optimization algorithm selection in wind farm layout optimization. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- MacLeod, A.J.; Barnes, S.; Rados, K.G.; Bryden, I.G. Wake effects in tidal current turbine farms. In Proceedings of the MAREC Conference, Newcastle, UK, 1 January 2002; pp. 49–53. [Google Scholar]
- Lo Brutto, O.A.; Guillou, S.S.; Thiébot, J.; Gualous, H. Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization. Appl. Energy 2017, 204, 653–666. [Google Scholar] [CrossRef]
- Myers, L.E. Operational Parameter of Horizontal Axis Marine Current Turbines. Ph.D. Thesis, University of Southampton, Southampton, UK, 2005. [Google Scholar]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy 2014, 66, 729–746. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef]
- Stallard, T.; Feng, T.; Stansby, P.K. Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. J. Fluids Struct. 2015, 54, 235–246. [Google Scholar] [CrossRef]
- Nash, S.; Olbert, A.I.; Hartnett, M. Towards a low-cost modelling system for optimising the layout of tidal turbine arrays. Energies 2015, 8, 13521–13539. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.H.; Jang, K.; Lee, J.; Hur, N. A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks. Curr. Appl. Phys. 2010, 10, S137–S141. [Google Scholar] [CrossRef]
- Divett, T.; Vennell, R.; Stevens, C. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120251. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Chin, R.J.; Luo, H.; Yao, Y.; Wu, Z. An effective framework for wake predictions of tidal-current turbines. Ocean Eng. 2021, 235, 109403. [Google Scholar] [CrossRef]
- Roc, T.; Conley, D.C.; Greaves, D. Methodology for tidal turbine representation in ocean circulation model. Renew. Energy 2013, 51, 448–464. [Google Scholar] [CrossRef]
- Roc, T.; Greaves, D.; Thyng, K.M.; Conley, D.C. Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Eng. 2014, 78, 95–111. [Google Scholar] [CrossRef]
- Gebreslassie, M.G.; Tabor, G.R.; Belmont, M.R. Investigation of the performance of a staggered configuration of tidal turbines using CFD. Renew. Energy 2015, 80, 690–698. [Google Scholar] [CrossRef]
- Malki, R.; Masters, I.; Williams, A.J.; Croft, T.N. Planning tidal stream turbine array layouts using a coupled blade element momentum—Computational fluid dynamics model. Renew. Energy 2014, 63, 46–54. [Google Scholar] [CrossRef]
- Stansby, P.; Stallard, T. Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles. Renew. Energy 2016, 92, 366–375. [Google Scholar] [CrossRef]
- Funke, S.W.; Farrell, P.E.; Piggott, M.D. Tidal turbine array optimisation using the adjoint approach. Renew. Energy 2014, 63, 658–673. [Google Scholar] [CrossRef]
- Vennell, R.; Funke, S.W.; Draper, S.; Stevens, C.; Divett, T. Designing large arrays of tidal turbines: A synthesis and review. Renew. Sustain. Energy Rev. 2015, 41, 454–472. [Google Scholar] [CrossRef]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Tong, L.; Guo, Y.; Zhang, P. Investigation of array layout of tidal stream turbines on energy extraction efficiency. Ocean Eng. 2020, 196, 106775. [Google Scholar] [CrossRef]
- Wan, C.Q.; Wang, J.; Yang, G. Optimal Micro-siting of Wind Farm Based on Weibull Distributon. Acta Energiae Sol. Sin. 2011, 32, 999–1004. [Google Scholar]
- Abdelsalam, A.M.; El-Shorbagy, M.A. Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renew. Energy 2018, 123, 748–755. [Google Scholar] [CrossRef]
- Pookpunt, S.; Ongsakul, W. Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew. Energy 2013, 55, 266–276. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, X.H.; Chen, G.C. Tidal Current Turbines Micrositing Based on Improved Differential Evolution Algorithm. Trans. China Electrotech. Soc. 2016, 31, 99–108. [Google Scholar]
- Liu, C.; Wang, K.; Wang, X.H. Optimal deployment of tidal current turbines based on particle swarm algorithm. J. Zhejiang Univ. (Eng. Sci.) 2013, 47, 2088–2093. [Google Scholar]
- Wu, G.W.; Wu, H.; Wang, X.Y.; Zhou, Q.W.; Liu, X.M. Tidal Turbine Array Optimization Based on the Discrete Particle Swarm Algorithm. China Ocean Eng. 2018, 32, 358–364. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Nguyen, V.T.; Guillou, S.S.; Thiébot, J.; Gualous, H. Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio. Renew. Energy 2016, 99, 347–359. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Thiébot, J.; Guillou, S.S.; Gualous, H. A semi-analytic method to optimize tidal farm layouts—Application to the Alderney Race (Raz Blanchard), France. Appl. Energy 2016, 183, 1168–1180. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Cowles, G. An Unstructured Grid, Finite-Volume Coastal Ocean Model: FVCOM User Manual, 2nd ed.; Citeseer: State College, PA, USA, 2006; Volume 19, pp. 78–89. [Google Scholar]
- Palm, M.; Huijsmans, R.; Pourquie, M. The application of semi-empirical wake models for tidal farms. In Proceedings of the 9th European Wave and Tidal Energy Conference Series (EWTEC), Southampton, UK, 5–9 September 2011. [Google Scholar]
- Wang, S.; Lam, W.H.; Cui, Y.; Zhang, T.; Jiang, J.; Sun, C.; Guo, J.; Ma, Y.; Amill, G. Novel energy coefficient used to predict efflux velocity of tidal current turbine. Energy 2018, 158, 730–745. [Google Scholar] [CrossRef]
- Wang, S.; Lam, W.H.; Cui, Y.; Zhang, T.; Jiang, J.; Sun, C.; Guo, J.; Ma, Y.; Hamill, G. Semi-empirical wake structure model of rotors using joint axial momentum theory and DES-SA method. Ocean Eng. 2019, 191, 106525. [Google Scholar] [CrossRef]
- Jensen, N.O. A Note on Wind Generator Interaction; Ris∅ National Laboratory: Roskilde, Denmark, 1983.
- Graham, R. An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1972, 1, 73–82. [Google Scholar] [CrossRef]
- Bourke, P. Calculating the Area and Centroid of a Polygon; Swinburne University of Technology: Hawthorn, Australia, 1988. [Google Scholar]
- Previsic, M.; Chozas, J. International Levelised Cost of Energy for Ocean Energy Technologies; Ocean Energy System: Lisbon, Portugal, 2015. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yang, S.; Wang, M.; Jiao, L. A quantum particle swarm optimization. In Proceeding of the 2004 IEEE Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 320–324. [Google Scholar]
- Hou, F.; Yu, H.M.; Bao, X.W.; Wu, H. Analysis of tidal current energy in Zhoushan sea area based on high resolution numerical modeling. Sol. Energy 2014, 35, 125–133. [Google Scholar]
- Wu, Y.N.; Wu, H.; Feng, Z. Assessment of tidal current energy resource at Putuo Mountain-Hulu Island waterway. Renew. Energy Resour. 2017, 35, 1566–1573. [Google Scholar]
Parameters | Current Speed (m/s) | Current Direction (°) | Depth (m) | ||||
---|---|---|---|---|---|---|---|
Tidal Moment | Maximum | Minimum | Maximum | Minimum | Maximum | Minimum | |
Flood tide | 2.03 | 1.09 | 346.45 | 325.52 | 54.0 | 13.8 | |
Ebb tide | 1.96 | 1.02 | 168.18 | 147.01 |
Reference on Initial Layout | Case 1 | Case 2 | |
---|---|---|---|
Energy production (in MWh) | 21,552 | 25,697 (19%) | ≈24,922 (16%) |
Farm power (in MW) | 6.84 | 8.62 (22%) | 8.24 (20%) |
Sea space utilization (in km2) | 0.40 | 0.31 (−22%) | 0.30 (−24%) |
LCOE (in USD/kWh) | 4.43 | ≈3.81 (−12%) | 3.73 (−15%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, H.; Kang, H.-S.; Li, H. Layout Optimization of a Tidal Current Turbine Array Based on Quantum Discrete Particle Swarm Algorithm. J. Mar. Sci. Eng. 2023, 11, 1994. https://doi.org/10.3390/jmse11101994
Wu Y, Wu H, Kang H-S, Li H. Layout Optimization of a Tidal Current Turbine Array Based on Quantum Discrete Particle Swarm Algorithm. Journal of Marine Science and Engineering. 2023; 11(10):1994. https://doi.org/10.3390/jmse11101994
Chicago/Turabian StyleWu, Yanan, He Wu, Hooi-Siang Kang, and He Li. 2023. "Layout Optimization of a Tidal Current Turbine Array Based on Quantum Discrete Particle Swarm Algorithm" Journal of Marine Science and Engineering 11, no. 10: 1994. https://doi.org/10.3390/jmse11101994
APA StyleWu, Y., Wu, H., Kang, H.-S., & Li, H. (2023). Layout Optimization of a Tidal Current Turbine Array Based on Quantum Discrete Particle Swarm Algorithm. Journal of Marine Science and Engineering, 11(10), 1994. https://doi.org/10.3390/jmse11101994