Integrated Analytical Approach: An Added Value in Environmental Diagnostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study I—TiO2 in Mussels
2.2. Case Study II—Recovery of Bioclast in Circular Economy
2.3. Case Study III—An Environmental “Crime Scene”
2.4. Common Microchemical Analyses Performed in Tested Case-Studies
3. Results
3.1. Case Study I—TiO2 in Mussels
3.2. Case Study II—Bioclasts in Circular Economy
3.3. Case Study III—An Environmental “Crime Scene”
4. Discussion
4.1. Case Study I—TiO2 in Mussels
4.2. Case Study II—Bioclasts in the Circular Economy
4.3. Case Study III—An Environmental “Crime Scene”
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. 21—Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Chowdhary, P., Raj, A., Verma, D., Akhter, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–429. [Google Scholar]
- Morgan, K.R. Environmental impact assessment: The state of the art. Impact Assess. Proj. Apprais. 2012, 30, 5–14. [Google Scholar] [CrossRef]
- Zaghloul, A.; Saber, M.; Gadow, S.; Awad, F. Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bull. Natl. Res. Cent. 2020, 44, 127. [Google Scholar] [CrossRef]
- Russell, V.S. Pollution: Concept and definition. Biol. Conserv. 1974, 6, 157–161. [Google Scholar] [CrossRef]
- Pastorino, P.; Brizio, P.; Abete, M.C.; Bertoli, M.; Noser AG, O.; Piazza, G.; Prearo, M.; Elia, A.C.; Pizzul, E.; Squadrone, S. Macrobenthic invertebrates as tracers of rare earth elements in freshwater watercourses. Sci. Total Environ. 2020, 698, 134282. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef] [PubMed]
- Broccoli, A.; Anselmi, S.; Cavallo, A.; Ferrari, V.; Prevedelli, D.; Pastorino, P.; Renzi, M. Ecotoxicological effects of new generation pollutants (nanoparticles, amoxicillin and white musk) on freshwater and marine phytoplankton species. Chemosphere 2021, 279, 130623. [Google Scholar] [CrossRef]
- Xie, W.; Li, T.; Tiraferri, A.; Drioli, E.; Figoli, A.; Crittenden, J.C.; Liu, B. Toward the next generation of sustainable membranes from green chemistry principles. ACS Sustain. Chem. Eng. 2020, 9, 50–75. [Google Scholar] [CrossRef]
- Paracelso, P.T.B.a.H. Opera Omnia; Sumptibus Joan. Antonii, & Samuelis De Tournes: Geneva, Switzerland, 1658. [Google Scholar]
- Sicuro, B.; Castelar, B.; Mugetti, D.; Pastorino, P.; Chiarandon, A.; Menconi, V.; Galloni, M.; Prearo, M. Bioremediation with freshwater bivalves: A sustainable approach to reducing the environmental impact of inland trout farms. J. Environ. Manag. 2020, 276, 111327. [Google Scholar] [CrossRef]
- Bertoli, M.; Pastorino, P.; Lesa, D.; Renzi, M.; Anselmi, S.; Prearo, M.; Pizzul, E. Microplastics accumulation in functional feeding guilds and functional habit groups of freshwater macrobenthic invertebrates: Novel insights in a riverine ecosystem. Sci. Total Environ. 2022, 804, 150207. [Google Scholar] [CrossRef]
- Pastorino, P.; Prearo, M.; Di Blasio, A.; Barcelò, D.; Anselmi, S.; Colussi, S.; Alberti, S.; Tedde, G.; Dondo, A.; Ottino, M.; et al. Microplastics Occurrence in the European Common Frog (Rana temporaria) from Cottian Alps (Northwest Italy). Diversity 2022, 14, 66. [Google Scholar] [CrossRef]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Senderovich, Y.; Izhaki, I.; Halpern, M. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 2010, 5, e8607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cverenkárová, K.; Valachovičová, M.; Mackul’ak, T.; Žemlička, L.; Bírošová, L. Microplastics in the food chain. Life 2021, 11, 1349. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Piccardo, M.; Felline, S.; Terlizzi, A.; Renzi, M. Short-term physiological and biometrical responses of Lepidium sativum seedlings exposed to PET-made microplastics and acid rain. Ecotoxicol. Environ. Saf. 2021, 208, 111718. [Google Scholar] [CrossRef] [PubMed]
- Pignattelli, S.; Broccoli, A.; Piccardo, M.; Terlizzi, A.; Renzi, M. Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum. Environ. Pollut. 2021, 282, 116997. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, M.; Provenza, F.; Grazioli, E.; Anselmi, S.; Terlizzi, A.; Renzi, M. Impacts of Plastic-Made Packaging on Marine Key Species: Effects Following Water Acidification and Ecological Implications. J. Mar. Sci. Eng. 2021, 9, 432. [Google Scholar] [CrossRef]
- Roy, T.; Dey, T.K.; Jamal, M. Microplastic/nanoplastic toxicity in plants: An imminent concern. Environ. Monit. Assess. 2023, 195, 27. [Google Scholar] [CrossRef]
- Carson, R.L. Primavera Silenziosa; Universale Economica Feltrinelli Editore: Milan, Italiy, 1968; p. 336. (In Italian) [Google Scholar]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- Kasuya, M.; Teranishi, H.; Aoshima, K.; Katoh, T.; Horiguchi, H.; Morikawa, Y.; Nishijo MIwata, K. Water Pollution by Cadmium and the Onset of Itai-itai Disease. Water Sci. Technol. 1992, 25, 149–156. [Google Scholar] [CrossRef]
- Bacci, E. Ecotoxicology of Organic Contaminants; CRC Press: Boca Raton, FL, USA, 1993; p. 176. [Google Scholar]
- Renzi, M.; Guerranti, C.; Anselmi, S.; Provenza, F.; Leone, M.; La Rocca, G.; Cavallo, A. A multidisciplinary approach to Posidonia oceanica detritus management (Port of Sperlonga, Italy): A story of turning a problem into a resource. Water 2022, 14, 2856. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev. 2012, 41, 2943–2970. [Google Scholar] [CrossRef] [Green Version]
- Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008, 156, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, C.O.; Uyar, A.E.; Darby, M.R.; Zucker, L.G.; Wiesner, M.R. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci Technol. 2009, 43, 4227–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahie, S.; Lloyd, J.J.; Farr, P.M. Sunscreen ingredients and labelling: A survey of products available in the UK. Clin. Exp. Dermatol. Clin. Dermatol. 2007, 32, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J.; et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007, 168, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Brennan, A.; Diamond, S.A. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Environ. Toxicol. Chem. 2012, 31, 1621–1629. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Clemente, Z.; Castro, V.L.; Jonsson, C.M.; Fraceto, L.F. Ecotoxicology of nano-TiO2–an evaluation of its toxicity to organisms of aquatic ecosystems. Int. J. Environ. Res. 2012, 6, 33–50. [Google Scholar]
- Chen, J.; Poon, C.S. Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 2009, 44, 1899–1906. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussain, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Gnanasekar, K.; Rambabu, B. Nanostructure Semiconductor Oxide Powders and Thin Films for Gas Sensor. Surf. Sci. 2002, 200, 780. [Google Scholar]
- Menard, A.; Drobne, D.; Jemec, A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ. Pollut. 2011, 159, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Blašković, A. Ecotoxicity of nano-metal oxides: A case study on Daphnia magna. Ecotoxicology 2019, 28, 878–889. [Google Scholar] [CrossRef]
- Goldberg, E.; Bowen, V.; Farrington, J.; Harvey, G.; Martin, J.; Parker, P.; Risebrough, R.W.; Robertson, R.W.; Schneider, E.; Gamble, E. The Mussel Watch. Environ. Conserv. 1978, 5, 101–125. [Google Scholar] [CrossRef]
- Gagné, F.; Auclair, J.; Turcotte, P.; Fournier, M.; Gagnon, C.; Sauvé, S.; Blaise, C. Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquat. Toxicol. 2008, 86, 333–340. [Google Scholar] [CrossRef]
- Koehler, A.; Marx, U.; Broeg, K.; Bahns, S.; Bressling, J. Effects of nanoparticles in Mytilus edulis gills and hepatopancreas—A new threat to marine life? Mar. Environ. Res. 2008, 66, 12–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, S.; Doyle, H.; Blasco, J.; Redmond, G.; Sheehan, D. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 167–174. [Google Scholar] [CrossRef]
- Hanna, S.K.; Miller, R.J.; Muller, E.B.; Nisbet, R.M.; Lenihan, H.S. Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS ONE 2013, 8, e61800. [Google Scholar] [CrossRef] [Green Version]
- Canesi, L.; Frenzilli, G.; Balbi, T.; Bernardeschi, M.; Ciacci, C.; Corsolini, S.; Della Torre, C.; Fabbri, R.; Faleri, C.; Focardi, S.; et al. Interactive effects of n-TiO2 and 2, 3, 7, 8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2014, 153, 53–65. [Google Scholar] [CrossRef]
- Tang, Y.; Xin, H.; Yang, S.; Guo, M.; Malkoske, T.; Yin, D.; Xia, S. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback. Aquat. Toxicol. 2018, 204, 19–26. [Google Scholar] [CrossRef]
- Gomes, T.; Pereira, C.G.; Cardoso, C.; Pinheiro, J.P.; Cancio, I.; Bebianno, M.J. Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat. Toxicol. 2012, 118, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Chora, S.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: An exploratory biomarker discovery. Aquat. Toxicol. 2014, 155, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Provenza, F.; Anselmi, S.; Specchiulli, A.; Piccardo, M.; Barceló, D.; Prearo, M.; Pastorino, P.; Renzi, M. Sparkling plastic: Effects of exposure to glitter on the Mediterranean mussel Mytilus galloprovincialis. Environ. Toxicol. Pharmacol. 2022, 96, 103994. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Gao, R.; Yuan, Z.; Zhao, Z.; Gao, X. Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochem. Bioenerg. 1998, 45, 41–45. [Google Scholar] [CrossRef]
- Badary, O.A.; Abdel-Maksoud, S.; Ahmed, W.A.; Owieda, G.H. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci. 2005, 76, 2125–2135. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Cicero, A.M.; Di Girolamo, I. Metodologie Analitiche di Riferimento del Programma di Monitoraggio per il Controllo dell’Ambiente Marino Costiero (Triennio 2001–2003); Ministero dell’Ambiente e della Tutela del Territorio, ICRAM: Rome, Italy, 2001. [Google Scholar]
- IRSA/CNR. Analytical Methods for Water; Polygraphic Institute of the Italian Government: Rome, Italy, 1994; Volume 100. [Google Scholar]
- US EPA. Method 3051a: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils; Revision 1; US EPA: Washington, DC, USA, 2007. [Google Scholar]
- US EPA. Method 6020B: Inductively Coupled Plasma—Mass Spectrometry, Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; Revision 2; US EPA: Washington, DC, USA, 2014. [Google Scholar]
- APAT. Agenzia per la protezione dell’ambiente e per i servizi tecnici. Manuali e Linee Guida 29/2003: Metodi analitici per le acque. 2003. Vol I. Available online: https://www.irsa.cnr.it/wp/wp-content/uploads/2022/04/Vol2_Sez_4000_InorganiciNonMetallici.pdf. (accessed on 27 December 2022).
- Ottaviani, M.; Bonadonna, L. (Eds.) Rapporti ISTISAN 2007/31. Metodi Analitici di Riferimento per le Acque Destinate al Consumo Umano ai Sensi del D.L. 31/2001; Metodi Chimici. Met ISS BCA 023; Istituto Superiore Di Sanita’: Rome, Italy, 2007; p. 328. Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2277_allegato.pdf (accessed on 30 November 2020).
- EC 1-2008 UNI EN ISO 15586:2004. Qualità dell’acqua—Determinazione di elementi in traccia mediante spettrometria di assorbimento atomico con fornetto di grafite. Available online: https://store.uni.com/p/UNINI1558600C1/ec-1-2008-uni-en-iso-15586-2004/UNINI1558600C1. (accessed on 27 December 2022).
- Lopez-Serrano Oliver, A.; Munoz-Olivas, R.; Sanz Landaluze, J.; Rainieri, S.; Cámara, C. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos. Nanotoxicology 2015, 9, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, M.; Seitz, F.; Rosenfeldt, R.R.; Schulz, R. Effects of nanoparticles in fresh waters: Risks, mechanisms and interactions. Freshw. Biol. 2016, 61, 2185–2196. [Google Scholar] [CrossRef] [Green Version]
- Aruoja, V.; Dubourguier, H.C.; Kasemets, K.; Kahru, A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Bradley, T.; Moore, J.T.; Kuykindall, T.; Minella, L. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 2009, 3, 91–97. [Google Scholar] [CrossRef]
- Kulacki, K.J.; Cardinale, B.J.; Keller, A.A.; Bier, R.; Dickson, H. How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores. Environ. Toxicol. Chem. 2012, 31, 2414–2422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binh CT, T.; Adams, E.; Vigen, E.; Tong, T.; Alsina, M.A.; Gaillard, J.F.; Gray, K.A.; Peterson, C.G.; Kelly, J.J. Chronic addition of a common engineered nanomaterial alters biomass, activity and composition of stream biofilm communities. Environ. Sci. Nano 2016, 3, 619–630. [Google Scholar] [CrossRef]
- Pastorino, P.; Broccoli, A.; Bagolin, E.; Anselmi, S.; Cavallo, A.; Prearo, M.; Renzi, M. A Multidisciplinary Approach to Evaluate the Effects of Contaminants of Emerging Concern on Natural Freshwater and Brackish Water Phytoplankton Communities. Biology 2021, 10, 1039. [Google Scholar] [CrossRef]
- Metzler, D.M.; Li, M.; Erdem, A.; Huang, C.P. Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem. Eng. J. 2011, 170, 538–546. [Google Scholar] [CrossRef]
- González, I.D.; Navarro, R.M.; Alvarez-Galvan, M.C.; Rosa, F.; Fierro, J.L.G. Performance enhancement in the water–gas shift reaction of platinum deposited over a cerium-modified TiO2 support. Catal. Commun. 2008, 9, 1759–1765. [Google Scholar] [CrossRef]
- Handy, R.D.; Henry, T.B.; Scown, T.M.; Johnston, B.D.; Tyler, C.R. Manufactured nanoparticles: Their uptake and effects on fish—A mechanistic analysis. Ecotoxicology 2008, 17, 396–409. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. Int. J. 2008, 27, 1825–1851. [Google Scholar] [CrossRef]
- Barmo, C.; Ciacci, C.; Canonico, B.; Fabbri, R.; Cortese, K.; Balbi, T.; Marcomini, A.; Pojana, G.; Gallo, G.; Canesi, L. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2013, 132, 9–18. [Google Scholar] [CrossRef]
- Canesi, L.; Fabbri, R.; Gallo, G.; Vallotto, D.; Marcomini, A.; Pojana, G.J.A. T. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat. Toxicol. 2010, 100, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, C.; Balbi, T.; Grassi, G.; Frenzilli, G.; Bernardeschi, M.; Smerilli, A.; Guidi, P.; Canesi, L.; Nigro, M.; Monaci, F.; et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 2015, 297, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Ward, J.E.; Mason, R. An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Mar. Environ. Res. 2015, 110, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lin, D.; Ning, K.; Sui, Y.; Hu, M.; Lu, W.; Wang, Y. Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO2 and seawater acidification. Aquat. Toxicol. 2016, 180, 1–10. [Google Scholar] [CrossRef]
- Johnson, B.D.; Gilbert, S.L.; Khan, B.; Carroll, D.L.; Ringwood, A.H. Cellular responses of eastern oysters, Crassostrea virginica, to titanium dioxide nanoparticles. Mar. Environ. Res. 2015, 111, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Marisa, I.; Marin, M.G.; Caicci, F.; Franceschinis, E.; Martucci, A.; Matozzo, V. In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: Nanoparticle characterisation, effects on phagocytic activity and internalisation of nanoparticles into haemocytes. Mar. Environ. Res. 2015, 103, 11–17. [Google Scholar] [CrossRef]
- Shi, W.; Han, Y.; Guo, C.; Zhao, X.; Liu, S.; Su, W.; Zha, S.; Wang, Y.; Liu, G. Immunotoxicity of nanoparticle nTiO2 to a commercial marine bivalve species, Tegillarca granosa. Fish Shellfish. Immunol. 2017, 66, 300–306. [Google Scholar] [CrossRef]
- Wu, F.; Falfushynska, H.; Dellwig, O.; Piontkivska, H.; Sokolova, I.M. Interactive effects of salinity variation and exposure to ZnO nanoparticles on the innate immune system of a sentinel marine bivalve, Mytilus edulis. Sci. Total Environ. 2020, 712, 136473. [Google Scholar] [CrossRef]
- Xia, B.; Zhu, L.; Han, Q.; Sun, X.; Chen, B.; Qu, K. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: An integrated biomarker approach. Environ. Toxicol. Pharmacol. 2017, 50, 128–135. [Google Scholar] [CrossRef]
- Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387–395. [Google Scholar] [CrossRef]
- Caballero-Diaz, E.; Guzman-Ruiz, R.; Malagon, M.M.; Simonet, B.M.; Valcarcel, M. Effects of the interaction of single-walled carbon nanotubes with 4-nonylphenol on their in vitro toxicity. J. Hazard. Mater. 2014, 275, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Zhu, B.; Xiao, X.; Li, Y.; Dirbaba, N.B.; Zhou, B.; Wu, H. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat. Toxicol. 2015, 161, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhang, Y.; Song, C.; Zhu, X.; Xing, B. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environ. Pollut. 2014, 192, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Shi, X.; Zhang, L.; Wang, Q.; Wang, X.; Guo, Y.; Zhou, B. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J. Hazard. Mater. 2015, 283, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Shi, Q.; Guo, Y.; Hua, J.; Wang, X.; Zhou, B. Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ. Sci. Technol. 2016, 50, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qu, R.; Liu, J.; Wei, Z.; Wang, L.; Yang, S.; Huang, Q.; Wang, Z. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Environ. Pollut. 2016, 208, 732–738. [Google Scholar] [CrossRef]
- Canesi, L.; Borghi, C.; Ciacci, C.; Fabbri, R.; Vergani, L.; Gallo, G. Bisphenol-A alters gene expression and functional parameters in molluscan hepatopancreas. Mol. Cell. Endocrinol. 2007, 276, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Jemec, A.; Tišler, T.; Drobne, D.; Sepčić, K.; Jamnik, P.; Roš, M. Biochemical biomarkers in chronically metal-stressed daphnids. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 147, 61–68. [Google Scholar] [CrossRef]
- Monteiro, R.; Costa, S.; Coppola, F.; Freitas, R.; Vale, C.; Pereira, E. Toxicity beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked seawater. Environ. Pollut. 2019, 244, 845–854. [Google Scholar] [CrossRef]
- Skrabal, S.A. Distributions of dissolved titanium in Chesapeake Bay and the Amazon River Estuary. Geochim. Et Cosmochim. Acta 1995, 59, 2449–2458. [Google Scholar] [CrossRef]
- Knauss, K.G.; Dibley, M.J.; Bourcier, W.L.; Shaw, H.F. Ti (IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300 °C. Appl. Geochem. 2001, 16, 1115–1128. [Google Scholar] [CrossRef]
- Schmidt, J.; Vogelsberger, W. Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J. Solut. Chem. 2009, 38, 1267–1282. [Google Scholar] [CrossRef]
- Yan, L.; Stallard, R.F.; Key, R.M.; Crerar, D.A. Trace metals and dissolved organic carbon in estuaries and offshore waters of New Jersey, USA. Geochim. Cosmochim. Acta 1991, 55, 3647–3656. [Google Scholar] [CrossRef]
- Yokoi, K.; van den Berg, C.M. Determination of titanium in sea water using catalytic cathodic stripping voltammetry. Anal. Chim. Acta 1991, 245, 167–176. [Google Scholar] [CrossRef]
- Ward, J.E.; Shumway, S.E. Separating the grain from the chaff: Particle selection in suspension-and deposit-feeding bivalves. J. Exp. Mar. Biol. Ecol. 2004, 300, 83–130. [Google Scholar] [CrossRef]
- Møhlenberg, F.; Riisgård, H.U. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 1978, 17, 239–246. [Google Scholar] [CrossRef]
- Riisgård, H.U. Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Mar. Ecol. Prog. Ser. Oldendorf 1988, 45, 217–223. [Google Scholar] [CrossRef]
- Calliari, L.J.; Machado, A.A.; Marroig, P.; Vinzon, S.; Gianuca, N. Mud deposits at Cassino beach: Role of dredging. Geo-Mar. Lett. 2020, 40, 1031–1043. [Google Scholar] [CrossRef]
- Scialla, S.; Carella, F.; Dapporto, M.; Sprio, S.; Piancastelli, A.; Palazzo, B.; Adamiano, A.; Degli Esposti, L.; Iafisco, M.; Piccirillo, C. Mussel Shell-Derived Macroporous 3D Scaffold: Characterization and Optimization Study of a Bioceramic from the Circular Economy. Mar. Drugs 2020, 18, 309. [Google Scholar] [CrossRef]
- Martino, S. Fisheries and Aquaculture in the Lagoon of Orbetello. In Proceedings of the European Association of Agricultural Economists 95th Seminar, Civitavecchia, Italy, 9–10 December 2005; pp. 363–378. [Google Scholar]
- Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of mussel (Mytilus galloprovincialis) farming in the Po river delta, northern Italy, based on a life cycle assessment approach. Sustainability 2020, 12, 3814. [Google Scholar] [CrossRef]
- Wang, W.; Wei, W.; Gao, S.; Chen, G.; Yuan, J.; Li, Y. Agricultural and aquaculture wastes as concrete components: A Review. Front. Mater. 2021, 8, 762568. [Google Scholar] [CrossRef]
Physicochemical Parameter | Method and Reference | LOQ (mg/kg) | Meas Units |
---|---|---|---|
Grain-size | ICRAM Metodologie analitiche di riferimento—sedimenti (2001), Scheda 3 [53] | 0.1 | % |
Water content (105 °C) | CNR IRSA 2.4.1 Q 64 Vol 2 1984 [54] | 0.1 | % |
Arsenic (As) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 0.03 | mg/kg s.s. |
Cadmium (Cd) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Total Chromium (Cr) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Copper (Cu) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 0.03 | mg/kg s.s. |
Mercury (Hg) | EPA 3051A 2007 + EPA 6020B [55,56] | 1 | mg/kg s.s. |
Nickel (Ni) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Lead (Pb) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Zinc (Zn) | EPA 3051A 2007 + EPA 6020B [55,56] | 1 | mg/kg s.s. |
Alluminium (Al) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Iron (Fe) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Vanadium (V) | EPA 3051A 2007 + EPA 6020B 2014 [55,56] | 1 | mg/kg s.s. |
Physicochemical Parameter | Symbol | Method and Reference | LOQ | Unit |
---|---|---|---|---|
pH | pH | APAT CNR IRSA 2060 [57] | 0.1 | pH units |
Total Suspended Solids | TSS | APAT CNR IRSA 2090—Metodo B [57] | 1 | mg/L |
Chemical Oxygen Demand | COD | APAT CNR IRSA 5130 Man 29 2003 [57] | 1 | mg/L |
Biological Oxygen Demand | BOD5 | APAT CNR IRSA 5120 Man 29 2003 [57] | 1 | mg/L |
Total Phosphorous | TP | APAT CNR IRSA 4060 Man 29 2003 [57] | 0.1 | mg/L P |
Ammonium | NH4+ | Rapporti ISTISAN 2007/31 Met ISS BHE 019 [58] | 0.1 | mg/L N |
Nitric Nitrogen | N-NO₃− | APAT CNR IRSA 4020 Man 29 2003 [57] | 0.01 | mg/L N |
Nitrous nitrogen | N-NO2− | APAT CNR IRSA 4020 Man 29 2003 [57] | 0.01 | mg/L N |
Arsenic | As | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.001 | mg/L |
Cadmium | Cd | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.002 | mg/L |
Cromium | Cr | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.1 | mg/L |
Mercury | Hg | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.0005 | mg/L |
Nickel | Ni | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.01 | mg/L |
Lead | Pb | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.01 | mg/L |
Copper | Cu | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.01 | mg/L |
Vanadium | V | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.002 | mg/L |
Zinc | Zn | UNI EN ISO 15586:2004/EC 1-2008 [59] | 0.01 | mg/L |
Dose | Protein Content µg/mL | SOD U/mL | GST µmol/(µg.min) | MDA U/mg | GPx nmol/(mg.min) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
DG-T0 | 36,172 | 4.36 | 0.44 | 0.0081 | 0.0015 | 1.5 | 0.1 | 2.97 | 2.99 |
DG-NC | 24,642 | 3.26 | 0.01 | 0.0072 | 0.0007 | 1.4 | 0.4 | 4.34 | 0.09 |
DG-10 μg/L | 24,528 | 3.26 | 0.10 | 0.0076 | 0.0016 | 2.9 | 0.5 | 1.69 | 0.06 |
DG-100 μg/L | 25,948 | 2.93 | 0.30 | 0.0069 | 0.0003 | 7.6 | 1.2 | 5.99 | 0.08 |
G-T0 | 15,942 | 3.06 | 0.27 | 0.0029 | 0.0017 | 1.1 | <0.1 | 3.40 | 1.59 |
G-NC | 8528 | 3.49 | 0.08 | 0.0028 | 0.0001 | 1.5 | 0.1 | 8.12 | 0.01 |
G-10 μg/L | 8411 | 3.59 | 0.37 | 0.0018 | 0.0008 | 4.8 | 0.1 | 2.93 | 0.08 |
G-100 μg/L | 7064 | 2.97 | 0.09 | 0.0046 | 0.0014 | 5.6 | 0.6 | 6.39 | 0.03 |
Biomarker | Contrast | Difference | Standardized Difference | Critical Difference | Pr > Diff |
---|---|---|---|---|---|
GPx | NG vs. G1 | −4.059 | −5.563 | 1958 | 0.0001 |
NG vs. G2 | −3.256 | −4.461 | 1958 | 0.002 | |
ND vs. DG1 | −6.190 | −6.561 | 2531 | <0.0001 | |
GST | NG vs. G1 | −0.004 | −3.618 | 0.003 | 0.009 |
ND vs. DG2 | −0.007 | −10.974 | 0.002 | <0.0001 | |
ND vs. DG1 | −0.006 | −9.817 | 0.002 | <0.0001 | |
SOD | NG vs. G1 | 0.516 | 4.206 | 0.329 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renzi, M.; Pastorino, P.; Provenza, F.; Anselmi, S.; Specchiulli, A.; Cavallo, A. Integrated Analytical Approach: An Added Value in Environmental Diagnostics. J. Mar. Sci. Eng. 2023, 11, 66. https://doi.org/10.3390/jmse11010066
Renzi M, Pastorino P, Provenza F, Anselmi S, Specchiulli A, Cavallo A. Integrated Analytical Approach: An Added Value in Environmental Diagnostics. Journal of Marine Science and Engineering. 2023; 11(1):66. https://doi.org/10.3390/jmse11010066
Chicago/Turabian StyleRenzi, Monia, Paolo Pastorino, Francesca Provenza, Serena Anselmi, Antonietta Specchiulli, and Andrea Cavallo. 2023. "Integrated Analytical Approach: An Added Value in Environmental Diagnostics" Journal of Marine Science and Engineering 11, no. 1: 66. https://doi.org/10.3390/jmse11010066
APA StyleRenzi, M., Pastorino, P., Provenza, F., Anselmi, S., Specchiulli, A., & Cavallo, A. (2023). Integrated Analytical Approach: An Added Value in Environmental Diagnostics. Journal of Marine Science and Engineering, 11(1), 66. https://doi.org/10.3390/jmse11010066