High-Frequency Dependence of Acoustic Properties of Three Typical Sediments in the South China Sea
Abstract
:1. Introduction
2. Study Area and Method
2.1. Laboratory Measurement Method
- Number of acquisition channels: 2 channels;
- Sampling rate: up to 16 MHz, configurable by software;
- Sampling length: 10 ms;
- Sampling rate: 16 MHz;
- Resolution: 16 bit;
- Storage method: computer storage;
- Transmitting channel: 1 channel;
- Transmission frequency: 20 Hz~1 MHz, adjustable;
- Transmission waveform: sine wave, PCW, etc., the period is adjustable.
2.2. Biot–Stoll Model
3. Results and Discussion
3.1. Measured Data
3.2. Biot–Stoll Model Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, K.L.; Jackson, D.R.; Thorsos, E.I.; Tang, D.; Schock, S.G. Comparison of sound velocity and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media. IEEE J. Ocean. Eng. 2002, 27, 413–428. [Google Scholar] [CrossRef]
- Guo, X.S.; Stoesser, T.; Nian, T.K.; Jia, Y.G.; Liu, X.L. Effect of pipeline surface roughness on peak impact forces caused by submarine mudflow. Ocea. Eng. 2022, 243, 110184. [Google Scholar] [CrossRef]
- Gassmann, F. Uber die Elastizitat poroser Medien (Elasticity of porous media. Vierteljahrschrift der Naturforschenden). Gesellshaft Zur. 1951, 96, 1–23. [Google Scholar]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Hamilton, E.L. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 1980, 68, 1313–1340. [Google Scholar] [CrossRef]
- Stoll, R.D.; Kan, T.K. Reflection of acoustic waves at a water-sediment interface. J. Acoust. Soc. Am. 1981, 28, 149–156. [Google Scholar] [CrossRef]
- Williams, K.L. An effective density fluid model for acoustic propagation in sediments derived from Biot theory. J. Acoust. Soc. Am. 2001, 110, 2276–2281. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.R.; Richardson, M.D. High-frequency Seafloor Acoustics; Springer Science + Business Media: New York, NY, USA, 2007. [Google Scholar]
- Hovem, J.M.; Ingram, G.D. Viscous attenuation of sound in saturated sand. J. Acoust. Soc. Am. 1979, 66, 1807–1812. [Google Scholar] [CrossRef]
- Simpson, H.J.; Houston, B.H.; Liskey, S.W.; Frank, P.A.; Berdoz, A.R.; Kraus, L.A.; Frederickson, C.K.; Stanic, S. At-sea measurements of sound penetration into sediments using a buried vertical synthetic array. J. Acoust. Soc. Am. 2003, 114, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Ragione, L.L.; Recchia, G.; Jenkins, J.T. Wave propagation in an unconsolidated granular material: A micro-mechanical approach. Wave Motion 2020, 99, 102653. [Google Scholar] [CrossRef]
- Buckingham, M.J. On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments. J. Acoust. Soc. Am. 2007, 122, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomo, A.L.; Isakson, M.J. A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements. J. Acoust. Soc. Am. 2018, 143, 2501–2513. [Google Scholar] [CrossRef]
- Holmes, J.D.; Carey, W.M.; Dediu, S.M.; Siegmann, W.L. Nonlinear frequency-dependent attenuation in sandy sediments. J. Acoust. Soc. Am. 2007, 121, EL218–EL222. [Google Scholar] [CrossRef] [PubMed]
- Sessarego, J.P.; Ivakin, A.N.; Ferrand, D. Frequency Dependence of Phase Speed, Group Speed, and Attenuation in Water-Saturated Sand: Laboratory Experiments. IEEE J. Ocean. Eng. 2009, 33, 359–366. [Google Scholar] [CrossRef]
- Yu, S.; Wang, F.; Zheng, G.; Huang, Y. Progress and discussions in acoustic properties of marine sediments. J. Harbin Eng. Univ. 2020, 41, 7. [Google Scholar]
- Hamilton, E.L. Compressional wave attenuation in marine sediments. Geophysics. 1972, 37, 620–646. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, Z.; Wang, J.; Zheng, X.; Yan, W.; Tian, Y.; Luo, Y. Acoustic characteristics of seafloor sediments in the abyssal areas of the South China Sea. Ocea. Eng. 2018, 156, 93–100. [Google Scholar] [CrossRef]
- Stoll, R.D. Sediment Acoustics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Wang, J.; Li, G.; Kan, G.; Hou, Z.; Meng, X.; Liu, B.; Liu, C.; Lei, S. High frequency dependence of sound speed and attenuation in coral sand sediments. Ocea. Eng. 2021, 234, 109215. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Liu, B.; Meng, X.; Kan, G.; Pei, Y. Measurement and modeling of high-frequency acoustic properties in fine sandy sediments. Earth Space Sci. 2019, 6, 2057–2070. [Google Scholar] [CrossRef]
- Lee, K.M.; Ballard, M.S.; Mcneese, A.R.; Muir, T.G.; Wilson, P.S.; Costley, R.D.; Hathaway, K.K. In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models. J. Acoust. Soc. Am. 2016, 140, 3593. [Google Scholar] [CrossRef] [PubMed]
Study Area | Sediment Type | Range | Sound Speed (m/s) | Attenuation (dB/m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
27 kHz | 51 kHz | 111 kHz | 214 kHz | 247 kHz | 27 kHz | 51 kHz | 111 kHz | 214 kHz | 247 kHz | |||
South China Sea | Silty sand | Maximum | 1641.13 | 1637.64 | 1643.92 | 1657.43 | 1671.05 | 29.99 | 42.01 | 59.24 | 78.71 | 112.05 |
Minimum | 1576.70 | 1586.23 | 1591.61 | 1586.86 | 1598.36 | 5.72 | 17.30 | 36.46 | 43.99 | 59.01 | ||
Mean | 1609.17 | 1616.43 | 1622.47 | 1627.38 | 1634.16 | 14.42 | 25.1 | 42.6 | 54.12 | 75.81 | ||
Silt | Maximum | 1568.66 | 1568.77 | 1574.62 | 1580.10 | 1583.05 | 27.9 | 35.0 | 37.14 | 51.7 | 75.5 | |
Minimum | 1529.86 | 1527.96 | 1537.80 | 1539.12 | 1547.14 | 9.83 | 14.9 | 16.9 | 20.9 | 26.09 | ||
Mean | 1546.16 | 1550.56 | 1555.20 | 1560.32 | 1565.04 | 11.13 | 16.7 | 22.3 | 36.04 | 45.89 | ||
Silty clay | Maximum | 1461.18 | 1468.78 | 1469.51 | 1475.72 | 1474.19 | 6.06 | 18.5 | 24.52 | 40.6 | 65.87 | |
Minimum | 1439.92 | 1442.96 | 1453.8 | 1453.74 | 1458.77 | 2.97 | 9.3 | 8.09 | 16.05 | 18.55 | ||
Mean | 1451.19 | 1454.56 | 1459.20 | 1464.30 | 1466.7 | 4.25 | 10.7 | 13.3 | 26.22 | 35.45 | ||
Western Pacific | Clayey silt | Maximum | 1511.06 | 1512.11 | 1512.89 | 1515.71 | 1520.28 | 26.15 | 28.58 | 36.48 | 58.46 | 64.11 |
Minimum | 1495.53 | 1497.86 | 1499.06 | 1501.49 | 1505.79 | 18.19 | 22.58 | 28.91 | 34.15 | 39.19 | ||
Mean | 1503.28 | 1501.76 | 1504.08 | 1510.88 | 1516.96 | 22.38 | 24.21 | 33.57 | 42.36 | 49.59 |
Physical Parameter | Symbol | Unit | South China Sea Silty Sand | South China Sea Silt | South China Sea Silty Clay | Western Pacific Clayey Silt |
---|---|---|---|---|---|---|
Porosity | n | - | 0.482 | 0.550 | 0.694 | 0.663 |
Mean grain size | Mz | ϕ | 3.19 | 5.01 | 6.58 | 6.98 |
Grain bulk modulus * | Kg | Pa | 3.6 × 1010 | 3.6 × 1010 | 3.6 × 1010 | 3.6 × 1010 |
Fluid dynamic viscosity * | η | kg·m−1·s−1 | 0.00105 | 0.00105 | 0.00105 | 0.00105 |
Grain density | ρg | kg·m−3 | 2650 | 2650 | 2650 | 2650 |
Fluid density * | ρf | kg·m−3 | 1023 | 1023 | 1023 | 1023 |
Fluid bulk modulus * | Kf | Pa | 2.23 × 109 | 2.23 × 109 | 2.23 × 109 | 2.23× 109 |
Permeability + | κ | m2 | 2.25 × 10−11 | 4.38 × 10−12 | 2.14 × 10−12 | 8.89 × 10−13 |
Tortuosity + | α | — | 1.35 | 1.76 | 2.41 | 2.58 |
Pore size + | a | m | 2.49 × 10−5 | 1.01 × 10−5 | 6.27 × 10−6 | 4.13 × 10−6 |
Frame shear modulus * | μ | Pa | (1.178 − i0.18) × 107 | (0.725 − i0.18) × 107 | (0.299 − i0.18) × 107 | (0.368 − i0.18) × 107 |
Frame bulk modulus * | Kb | Pa | (1.532 − i0.24) × 107 | (0.943 − i0.20) × 107 | (0.389 − i0.24) × 107 | (0.479 − i0.20) × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Hou, Z.; Li, G.; Kan, G.; Liu, B.; Meng, X.; Hua, Q.; Sun, L. High-Frequency Dependence of Acoustic Properties of Three Typical Sediments in the South China Sea. J. Mar. Sci. Eng. 2022, 10, 1295. https://doi.org/10.3390/jmse10091295
Wang J, Hou Z, Li G, Kan G, Liu B, Meng X, Hua Q, Sun L. High-Frequency Dependence of Acoustic Properties of Three Typical Sediments in the South China Sea. Journal of Marine Science and Engineering. 2022; 10(9):1295. https://doi.org/10.3390/jmse10091295
Chicago/Turabian StyleWang, Jingqiang, Zhengyu Hou, Guanbao Li, Guangming Kan, Baohua Liu, Xiangmei Meng, Qingfeng Hua, and Lei Sun. 2022. "High-Frequency Dependence of Acoustic Properties of Three Typical Sediments in the South China Sea" Journal of Marine Science and Engineering 10, no. 9: 1295. https://doi.org/10.3390/jmse10091295
APA StyleWang, J., Hou, Z., Li, G., Kan, G., Liu, B., Meng, X., Hua, Q., & Sun, L. (2022). High-Frequency Dependence of Acoustic Properties of Three Typical Sediments in the South China Sea. Journal of Marine Science and Engineering, 10(9), 1295. https://doi.org/10.3390/jmse10091295