Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment
Abstract
:1. Introduction
2. Acoustic Properties of GHBS at Various Frequency Domains
2.1. Gas Hydrate Morphology
2.2. Acoustic Properties of GHBS
2.2.1. Wave Velocity
2.2.2. Wave Attenuation
2.3. Acoustic Properties of GHBS at Various Investigation Frequencies
2.3.1. Seismic Technique and VSP Technique
2.3.2. Well Logging Technique
2.3.3. Laboratory Measurements
2.4. Rock Physics Modeling for Acoustic Properties of GHBS
3. Rock Physics Models for GHBS
3.1. Classification of Rock Physics Models
3.2. Isotropic Rock Physics Models
3.2.1. Three-Phase Weighted Model
3.2.2. Three-Phase Biot Extension Model
3.2.3. Effective Medium Model
3.3. Anisotropic Rock Physics Models
3.3.1. Layered Anisotropic Model
3.3.2. Effective Medium Anisotropic Model
3.4. Comparison of Rock Physics Models
4. Application of Rock Physics Modeling to Field Data
4.1. Rock Physics Modeling for Acoustic Properties of GHBS
4.2. Hydrate Saturation Prediction Based on Rock Physics Modeling
5. Challenges
- Optimizing the input parameters of models is crucial for successful modeling. Although the sonic logging data directly reflecting the porosity, density, and mineral composition of GHBS are widely used to improve the input parameters, more geological information is still required to constrain the set of free parameters. The integration of rock physics modeling with measurements for core samples by technologies such as X-ray computed tomography, nuclear magnetic resonance, and X-ray diffraction enables us to investigate the microstructure, rock properties, and hydrate distribution of GHBS, and this integration can reduce the uncertainties in the modeling.
- How should we choose a suitable rock physics model for a specific question? Although the existing rock physics models are mainly proposed to deal with a specific problem, a certain model is not always valid in practical application. For example, confirming the dominated attenuation mechanism associated with gas hydrate and free gas from the measured attenuations. A combination of various models allows us to introduce as many mechanisms as possible and is further beneficial to explaining the observed attenuations.
- The final goal of rock physics modeling is quantifying the gas hydrate occurrence and distribution of GHBS from seismic and well log investigations. Because of the difficulties posed by taking in situ measurements for the drilling core, the calibration of the rock physics model is mainly conducted by ultrasonic measurements for the synthetic hydrate samples. Are the observations at the ultrasonic frequency domain still valid at the seismic and well log frequency domains? Combining the sonic logging data and cross-well seismic data with ultrasonic measurements for the core samples at the same well location can provide an insight into the P- and S-wave velocities and attenuations at various frequency domains. Rock physics modeling for these acoustic properties can further constrain the model and better explain these observations.
6. Conclusions
- P- and S-wave velocities are comprehensively affected by the hydrate saturation combined with the hydrate morphologies. Attenuation mechanisms associated with GHBS include the effect of hydrate morphology on attenuation, gas bubble damping, global Biot flow, local squirt flow, cementation and frictional loss between hydrate and solid grain, thin bound water film between hydrate and grain surface, and hydrate film between the gas bubble and the surrounding pore water.
- This study classifies the existing rock physics models into isotropic models for coarse-grained sediment including three-phase weighted equations, three-phase Biot extension equations, effective medium model, and anisotropic rock physics models for fine-grained sediment including layered anisotropic model and effective medium anisotropic model. We briefly introduce the assumption, characteristics, theoretical basis, and workflow of the aforementioned modeling. In particular, methods of introducing the attenuation caused by gas hydrate in the three-phase Biot extension model and effective medium model have also been reviewed. Then, the feasibility and limitations of these models are discussed and compared. This study provides insight into how to select a suitable rock physics model and how to conduct modeling in the application of the rock physics model to field data.
- Several important parameters, including hydrate morphology, the dip angle of fracture, sediment permeability, and attenuation mechanisms, can be inferred from the comparison between the modeled and measured acoustic properties. Based on the modeling examples using the abovementioned models, we investigated how to define these parameters. The most important application of rock physics modeling is predicting the hydrate saturation from the measured velocity from field investigations or laboratory measurements. We discussed the uncertainties of the predicted saturation caused by the errors related to the velocity measurements or rock physics modeling.
- We finally discussed the current challenges in rock physics modeling related to optimizing the input parameters, choice of a suitable model, and upscaling problems from ultrasonic to seismic and well log frequencies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
GH | Gas hydrate |
FG | Free gas |
GHSZ | Gas hydrate stability zone |
P-wave | Compressional wave |
S-wave | Shear wave |
VSP | Vertical seismic profiling |
BSR | Bottom simulating reflector |
THF | Tetrahydrofuran |
K-G Basin | Krishna-Godavari Basin |
Appendix A. Three-Phase Weighted Model
Appendix B. Three-Phase Biot Extension Model
Appendix C. Effective Medium Model
Appendix C.1. Effective Medium Model
Appendix C.2. Biot-Stoll Model
Appendix D. Layered Anisotropic Model
Appendix E. Effective Medium Anisotropic Model
Appendix F. Moduli, Densities, and Velocities of Sand, Clay, Hydrate, and Water in the Rock Physics Models
Parameters and Units | Value |
: sand bulk modulus, Pa | 38 × 109 [29] |
: clay bulk modulus, Pa | 21.2 × 109 [29] |
: hydrate bulk modulus, Pa | 7.9 × 109 [84] |
: water bulk modulus, Pa | 2.67 × 109 [29] |
: sand shear modulus, Pa | 44 × 109 [29] |
: clay shear modulus, Pa | 6.67 × 109 [29] |
: hydrate shear modulus, Pa | 3.3 × 109 [29] |
: sand grain density, kg/m3 | 2700 [29] |
: clay grain density, kg/m3 | 2580 [29] |
: hydrate density, kg/m3 | 600 [29] |
: water density, kg/m3 | 1000 [29] |
: P-wave velocity of sand | 6050 [84] |
: P-wave velocity of clay, m/s | 3420 [84] |
: P-wave velocity of hydrate, m/s | 3870 [84] |
: P-wave velocity of water, m/s | 1600 [84] |
: S-wave velocity of sand, m/s | 4090 [84] |
: S-wave velocity of clay, m/s | 1640 [84] |
: S-wave velocity of water, m/s | 1950 [84] |
References
- Sloan, E.D.; Koh, C. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9781420008494. [Google Scholar]
- Haq, B.U. Methane in the Deep Blue Sea. Science 1999, 285, 543–544. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Vasheghani Farahani, M.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas Hydrates in Sustainable Chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hassanpouryouzband, A.; Tohidi, B.; Chuvilin, E.; Bukhanov, B.; Istomin, V.; Cheremisin, A. Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate-Bearing Permafrost Sediments. J. Geophys. Res. Solid Earth 2019, 124, 2551–2563. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, F.; Tian, Y.; Wu, X.; Zheng, J.; Zhang, J.; Li, L.; Yang, P.; Zhao, J. Review and Prospects of Hydrate Cold Storage Technology. Renew. Sustain. Energy Rev. 2020, 117, 109492. [Google Scholar] [CrossRef]
- Yan, C.; Ren, X.; Cheng, Y.; Song, B.; Li, Y.; Tian, W. Geomechanical Issues in the Exploitation of Natural Gas Hydrate. Gondwana Res. 2020, 81, 403–422. [Google Scholar] [CrossRef]
- Ning, Y.; Li, Y.; Song, G.; Wang, W.; Liu, X.; Liu, Z.; Zhang, J. Investigation on Hydrate Formation and Growth Characteristics in Dissolved Asphaltene-Containing Water-In-Oil Emulsion. Langmuir 2021, 37, 11072–11083. [Google Scholar] [CrossRef]
- Khormali, A.; Sharifov, A.R.; Torba, D.I. Experimental and Modeling Analysis of Asphaltene Precipitation in the near Wellbore Region of Oil Wells. Pet. Sci. Technol. 2018, 36, 1030–1036. [Google Scholar] [CrossRef]
- Khormali, A.; Moghadasi, R.; Kazemzadeh, Y.; Struchkov, I. Development of a New Chemical Solvent Package for Increasing the Asphaltene Removal Performance under Static and Dynamic Conditions. J. Pet. Sci. Eng. 2021, 206, 109066. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X. Sen Review of Natural Gas Hydrates as an Energy Resource: Prospects and Challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Zatsepina, O.Y.; Buffett, B.A. Phase Equilibrium of Gas Hydrate: Implications for the Formation of Hydrate in the Deep Sea Floor. Geophys. Res. Lett. 1997, 24, 1567–1570. [Google Scholar] [CrossRef]
- Kelland, M. Natural Gas Hydrates: Energy for the Future. Mar. Pollut. Bull. 1994, 29, 307–311. [Google Scholar] [CrossRef]
- Minshull, T.A.; Marín-Moreno, H.; Betlem, P.; Bialas, J.; Bünz, S.; Burwicz, E.; Cameselle, A.L.; Cifci, G.; Giustiniani, M.; Hillman, J.I.T.; et al. Hydrate Occurrence in Europe: A Review of Available Evidence. Mar. Pet. Geol. 2020, 111, 735–764. [Google Scholar] [CrossRef]
- Yamamoto, K.; Boswell, R.; Collett, T.S.; Dallimore, S.R.; Lu, H. Review of Past Gas Production Attempts from Subsurface Gas Hydrate Deposits and Necessity of Long-Term Production Testing. Energy Fuels 2022, 36, 5047–5062. [Google Scholar] [CrossRef]
- Collett, T.S.; Boswell, R.; Waite, W.F.; Kumar, P.; Roy, S.K.; Chopra, K.; Singh, S.K.; Yamada, Y.; Tenma, N.; Pohlman, J.; et al. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Gas Hydrate Systems along the Eastern Continental Margin of India. Mar. Pet. Geol. 2019, 108, 39–142. [Google Scholar] [CrossRef]
- Collett, T.S.; Zyrianova, M.V.; Okinaka, N.; Wakatsuki, M.; Boswell, R.; Marsteller, S.; Minge, D.; Crumley, S.; Itter, D.; Hunter, R.; et al. Planning and Operations of the Hydrate 01 Stratigraphic Test Well, Prudhoe Bay Unit, Alaska North Slope. Energy Fuels 2022, 36, 3016–3039. [Google Scholar] [CrossRef]
- White, M.D.; Kneafsey, T.J.; Seol, Y.; Waite, W.F.; Uchida, S.; Lin, J.S.; Myshakin, E.M.; Gai, X.; Gupta, S.; Reagan, M.T.; et al. An International Code Comparison Study on Coupled Thermal, Hydrologic and Geomechanical Processes of Natural Gas Hydrate-Bearing Sediments. Mar. Pet. Geol. 2020, 120, 104566. [Google Scholar] [CrossRef]
- Dawe, R.A.; Thomas, S. A Large Potential Methane Source—Natural Gas Hydrates. Energy Sources Part A Recover. Util. Environ. Eff. 2007, 29, 217–229. [Google Scholar] [CrossRef]
- Demirbas, A. Methane Hydrates as Potential Energy Resource: Part 2—Methane Production Processes from Gas Hydrates. Energy Convers. Manag. 2010, 51, 1562–1571. [Google Scholar] [CrossRef]
- Demirbas, A.; Rehan, M.; Al-Sasi, B.O.; Nizami, A.S. Evaluation of Natural Gas Hydrates as a Future Methane Source. Pet. Sci. Technol. 2016, 34, 1204–1210. [Google Scholar] [CrossRef]
- Swaranjit Singh, A.A. Natural Gas Hydrate as an Upcoming Resource of Energy. J. Pet. Environ. Biotechnol. 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Gas Hydrates—Geological Perspective and Global Change. Rev. Geophys. 1993, 31, 173–187. [Google Scholar] [CrossRef]
- Zimmerman, R.W.; Kingt, M.S. The Effect of the Extent of Freezing on Seismic Velocities in Unconsolidated Permafrost. Geophysics 1986, 51, 1285–1290. [Google Scholar] [CrossRef]
- Dou, S.; Nakagawa, S.; Dreger, D.; Ajo-Franklin, J. A Rock-Physics Investigation of Unconsolidated Saline Permafrost: P-Wave Properties from Laboratory Ultrasonic Measurements. Geophysics 2016, 81, WA233–WA245. [Google Scholar] [CrossRef]
- Dou, S.; Nakagawa, S.; Dreger, D.; Ajo-Franklin, J. An Effective-Medium Model for P-Wave Velocities of Saturated, Unconsolidated Saline Permafrost. Geophysics 2017, 82, EN33–EN50. [Google Scholar] [CrossRef]
- Vasheghani Farahani, M.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Development of a Coupled Geophysical-Geothermal Scheme for Quantification of Hydrates in Gas Hydrate-Bearing Permafrost Sediments. Phys. Chem. Chem. Phys. 2021, 23, 24249–24264. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Matsushima, J. Rock-Physics Modeling of Ultrasonic P- And S-Wave Attenuation in Partially Frozen Brine and Unconsolidated Sand Systems and Comparison with Laboratory Measurements. Geophysics 2019, 84, MR153–MR171. [Google Scholar] [CrossRef]
- Collett, T.S. Energy Resource Potential of Natural Gas Hydrates. Am. Assoc. Pet. Geol. Bull. 2002, 86, 1971–1992. [Google Scholar]
- Guerin, G.; Goldberg, D. Modeling of Acoustic Wave Dissipation in Gas Hydrate-Bearing Sediments. Geochem. Geophys. Geosyst. 2005, 6, 1–16. [Google Scholar] [CrossRef]
- Guerin, G.; Goldberg, D.; Collett, T.S. Sonic Attenuation in the JAPEX/JNOC/GSC et Al. Mallik 5L-38 Gas Hydrate Production Research Well. Geol. Surv. Can. Bull. 2005, 585, 117. [Google Scholar] [CrossRef]
- Yuan, T.; Hyndman, R.D.; Spence, G.D.; Desmons, B. Seismic Velocity Increase and Deep-Sea Gas Hydrate Concentration above a Bottom-Simulating Reflector on the Northern Cascadia Continental Slope. J. Geophys. Res. 1996, 101, 13655. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Jiao, J.; Chen, H. Rock Physics Model and Seismic Dispersion and Attenuation in Gas Hydrate-Bearing Sediments. Front. Earth Sci. 2021, 9, 641606. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Ji, Y.; Wang, X. Acoustic Wave Propagation in a Borehole with a Gas Hydrate-Bearing Sediment. J. Mar. Sci. Eng. 2022, 10, 235. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Wang, X. Wave Propagation Characteristics in Gas Hydrate-Bearing Sediments and Estimation of Hydrate Saturation. Energies 2021, 14, 804. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S. Current Perspectives on Gas Hydrate Resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Zhan, L.; Matsushima, J. Frequency-Dependent P-Wave Attenuation in Hydrate-Bearing Sediments: A Rock Physics Study at Nankai Trough, Japan. Geophys. J. Int. 2018, 214, 1961–1985. [Google Scholar] [CrossRef]
- Waite, W.F.; Santamarina, J.C.; Cortes, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical Properties of Hydrate-Bearing Sediments. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Compressional and Shear Wave Velocities in Uncemented Sediment Containing Gas Hydrate. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Waite, W.F.; Jang, J.; Collett, T.S.; Kumar, P. Downhole Physical Property-Based Description of a Gas Hydrate Petroleum System in NGHP-02 Area C: A Channel, Levee, Fan Complex in the Krishna-Godavari Basin Offshore Eastern India. Mar. Pet. Geol. 2019, 108, 272–295. [Google Scholar] [CrossRef]
- Dai, S.; Santamarina, J.C.; Waite, W.F.; Kneafsey, T.J. Hydrate Morphology: Physical Properties of Sands with Patchy Hydrate Saturation. J. Geophys. Res. B Solid Earth 2012, 117, B11205. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Estimating the Amount of Gas Hydrate and Free Gas from Marine Seismic Data. Geophysics 2000, 65, 565–573. [Google Scholar] [CrossRef]
- Zhan, L.; Kang, D.; Lu, H.; Lu, J. Characterization of Coexistence of Gas Hydrate and Free Gas Using Sonic Logging Data in the Shenhu Area, South China Sea. J. Nat. Gas Sci. Eng. 2022, 101, 104540. [Google Scholar] [CrossRef]
- Ren, X.; Guo, Z.; Ning, F.; Ma, S. Permeability of Hydrate-Bearing Sediments. Earth-Sci. Rev. 2020, 202, 103100. [Google Scholar] [CrossRef]
- Sahoo, S.K.; North, L.J.; Marín-Moreno, H.; Minshull, T.A.; Best, A.I. Laboratory Observations of Frequency-Dependent Ultrasonic P-Wave Velocity and Attenuation during Methane Hydrate Formation in Berea Sandstone. Geophys. J. Int. 2019, 219, 713–723. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Madhusudhan, B.N.; Marín-Moreno, H.; North, L.J.; Ahmed, S.; Falcon-Suarez, I.H.; Minshull, T.A.; Best, A.I. Laboratory Insights Into the Effect of Sediment-Hosted Methane Hydrate Morphology on Elastic Wave Velocity From Time-Lapse 4-D Synchrotron X-Ray Computed Tomography. Geochem. Geophys. Geosyst. 2018, 19, 4502–4521. [Google Scholar] [CrossRef]
- Jang, J.; Santamarina, J.C. Hydrate Bearing Clayey Sediments: Formation and Gas Production Concepts. Mar. Pet. Geol. 2016, 77, 235–246. [Google Scholar] [CrossRef]
- Lei, L.; Seol, Y.; Jarvis, K. Pore-Scale Visualization of Methane Hydrate-Bearing Sediments with Micro-CT. Geophys. Res. Lett. 2018, 45, 5417–5426. [Google Scholar] [CrossRef]
- Lei, L.; Santamarina, J.C. Physical Properties of Fine-Grained Sediments with Segregated Hydrate Lenses. Mar. Pet. Geol. 2019, 109, 899–911. [Google Scholar] [CrossRef]
- Shankar, U.; Riedel, M. Gas Hydrate Saturation in the Krishna-Godavari Basin from P-Wave Velocity and Electrical Resistivity Logs. Mar. Pet. Geol. 2011, 28, 1768–1778. [Google Scholar] [CrossRef]
- Majumdar, U.; Cook, A.E.; Shedd, W.; Frye, M. The Connection between Natural Gas Hydrate and Bottom-Simulating Reflectors. Geophys. Res. Lett. 2016, 43, 7044–7051. [Google Scholar] [CrossRef]
- Haacke, R.R.; Westbrook, G.K.; Hyndman, R.D. Gas Hydrate, Fluid Flow and Free Gas: Formation of the Bottom-Simulating Reflector. Earth Planet. Sci. Lett. 2007, 261, 407–420. [Google Scholar] [CrossRef]
- Yun, T.S.; Santamarina, C.J.; Ruppel, C. Mechanical Properties of Sand, Silt, and Clay Containing Tetrahydrofuran Hydrate. J. Geophys. Res. Solid Earth 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Matsushima, J. Seismic Wave Attenuation in Methane Hydrate-Bearing Sediments Vertical Seismic Profiling Data from the Nankai Trough Exploratory Well, Offshore Tokai, Central Japan. J. Geophys. Res. Solid Earth 2006, 111, 1–20. [Google Scholar] [CrossRef]
- Jakobsen, M.; Hudson, J.A.; Minshull, T.A.; Singh, S.C. Elastic Properties of Hydrate-Bearing Sediments Using Effective Medium Theory. J. Geophys. Res. 2000, 105, 561–577. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. Elastic-Wave Velocity in Marine Sediments with Gas Hydrates: Effective Medium Modeling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Carcione, J.M.; Seriani, G. Seismic and Ultrasonic Velocities in Permafrost. Geophys. Prospect. 1998, 46, 441–454. [Google Scholar] [CrossRef]
- Lee, M.W.; Waite, W.F. Estimating Pore-Space Gas Hydrate Saturations from Well Log Acoustic Data. Geochem. Geophys. Geosyst. 2008, 9, 1–8. [Google Scholar] [CrossRef]
- Priest, J.A.; Best, A.I.; Clayton, C.R.I. A Laboratory Investigation into the Seismic Velocities of Methane Gas Hydrate-Bearing Sand. J. Geophys. Res. Solid Earth 2005, 110, 1–13. [Google Scholar] [CrossRef]
- Priest, J.A.; Rees, E.V.L.; Clayton, C.R.I. Influence of Gas Hydrate Morphology on the Seismic Velocities of Sands. J. Geophys. Res. Solid Earth 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Parametric Study of the Physical Properties of Hydrate-Bearing Sand, Silt, and Clay Sediments: 2. Small-Strain Mechanical Properties. J. Geophys. Res. Solid Earth 2010, 115, 1–11. [Google Scholar] [CrossRef]
- Dvorkin, J.; Moos, D.; Packwood, J.L.; Nur, A.M. Identifying Patchy Saturation from Well Logs. Geophysics 1999, 64, 1756–1759. [Google Scholar] [CrossRef]
- Lee, M.W. Elastic Velocities of Partially Gas-Saturated Unconsolidated Sediments. Mar. Pet. Geol. 2004, 21, 641–650. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. Bottom-Simulating Reflectors: Seismic Velocities and AVO Effects. Geophysics 2000, 65, 54–67. [Google Scholar] [CrossRef]
- Johnston, D.H.; Toksoz, M.N.; Timur, A. Attenuation of Seismic Waves in Dry and Saturated Rocks; II, Mechanisms. Geophysics 1979, 44, 691–711. [Google Scholar] [CrossRef]
- Walsh, J.B. Seismic Wave Attenuation in Rock Due to Frcition. J. Geophys. Res. 1966, 71, 2591–2599. [Google Scholar] [CrossRef]
- Winkler, K.W.; Nur, A. Seismic Attenuation: Effects of Pore Fluids and Frictional-sliding. Geophysics 1982, 47, 1–15. [Google Scholar] [CrossRef]
- White, J. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 1975, 40, 224–232. [Google Scholar] [CrossRef]
- Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J.P. Bubbles Attenuate Elastic Waves at Seismic Frequencies: First Experimental Evidence. Geophys. Res. Lett. 2015, 42, 3880–3887. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Leclaire, P.; Cohen-Ténoudji, F.; Aguirre-Puente, J. Extension of Biot’s Theory of Wave Propagation to Frozen Porous Media. J. Acoust. Soc. Am. 1994, 96, 3753–3768. [Google Scholar] [CrossRef]
- Mavko, G.M.; Nur, A. Wave Attenuation in Partially Saturated Rocks. Geophysics 1979, 44, 161–178. [Google Scholar] [CrossRef]
- Mavko, G.; Jizba, D. Estimating Grain-Scale Fluid Effects on Velocity Dispersion in Rocks. Geophysics 1991, 56, 1940–1949. [Google Scholar] [CrossRef]
- Murphy, W.M. Effects of Partial Water Saturation on Attenuation in Massillon Sandstone and Vycor Porous Glass. J. Acoust. Soc. Am. 1983, 71, 1458–1486. [Google Scholar] [CrossRef]
- Murphy, W.F.; Winkler, K.W.; Kleinberg, R.L. Acoustic Relaxation in Sedimentary Rocks: Dependence on Grain Contacts and Fluid Saturation. Geophysics 1986, 51, 757–766. [Google Scholar] [CrossRef]
- Jones, T.D. Pore Fluids and Frequency-Dependent Wave Propagation in Rocks. Geophysics 1986, 51, 1939–1953. [Google Scholar] [CrossRef]
- Ba, J.; Nie, J.X.; Cao, H.; Yang, H.Z. Mesoscopic Fluid Flow Simulation in Double-Porosity Rocks. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Tisato, N.; Quintal, B. Measurements of Seismic Attenuation and Transient Fluid Pressure in Partially Saturated Berea Sandstone: Evidence of Fluid Flow on the Mesoscopic Scale. Geophys. J. Int. 2013, 195, 342–351. [Google Scholar] [CrossRef]
- Müller, T.M.; Gurevich, B. Wave-Induced Fluid Flow in Random Porous Media: Attenuation and Dispersion of Elastic Waves. J. Acoust. Soc. Am. 2005, 117, 2732–2741. [Google Scholar] [CrossRef]
- Pride, S.R.; Berryman, J.G.; Harris, J.M. Seismic Attenuation Due to Wave-Induced Flow. J. Geophys. Res. Solid Earth 2004, 109, 1–19. [Google Scholar] [CrossRef]
- Sams, M.S.; Neep, J.P.; Worthington, M.H.; King, M.S. The Measurement of Velocity Dispersion and Frequency-Dependent Intrinsic Attenuation in Sedimentary Rocks. Geophysics 1997, 62, 1456–1464. [Google Scholar] [CrossRef]
- Best, A.I.; Huggett, Q.J.; Harris, A.J.K. Comparison of in Situ and Laboratory Acoustic Measurements on Lough Hyne Marine Sediments. J. Acoust. Soc. Am. 2001, 110, 695. [Google Scholar] [CrossRef]
- Batzle, M.L.; Han, D.-H.; Hofmann, R. Fluid Mobility and Frequency-Dependent Seismic Velocity—Direct Measurements. Geophysics 2006, 71, N1–N9. [Google Scholar] [CrossRef]
- Best, A.I.; Priest, J.A.; Clayton, C.R.I.; Rees, E.V.L. The Effect of Methane Hydrate Morphology and Water Saturation on Seismic Wave Attenuation in Sand under Shallow Sub-Seafloor Conditions. Earth Planet. Sci. Lett. 2013, 368, 78–87. [Google Scholar] [CrossRef]
- Marín-Moreno, H.; Sahoo, S.K.; Best, A.I. Theoretical Modeling Insights into Elastic Wave Attenuation Mechanisms in Marine Sediments with Pore-Filling Methane Hydrate. J. Geophys. Res. Solid Earth 2017, 122, 1835–1847. [Google Scholar] [CrossRef]
- Priest, J.A.; Best, A.I.; Clayton, C.R.I. Attenuation of Seismic Waves in Methane Gas Hydrate-Bearing Sand. Geophys. J. Int. 2006, 164, 149–159. [Google Scholar] [CrossRef]
- Chaouachi, M.; Falenty, A.; Sell, K.; Enzmann, F.; Kersten, M.; Haberthür, D.; Kuhs, W.F. Microstructural Evolution of Gas Hydrates in Sedimentary Matrices Observed with Synchrotron X-Ray Computed Tomographic Microscopy. Geochem. Geophys. Geosyst. 2015, 16, 1711–1722. [Google Scholar] [CrossRef]
- Sell, K.; Quintal, B.; Kersten, M.; Saenger, E.H. Squirt Flow Due to Interfacial Water Films in Hydrate Bearing Sediments. Solid Earth. 2018, 9, 699–711. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Best, A.I. The Influence of Gas Hydrate Morphology on Reservoir Permeability and Geophysical Shear Wave Remote Sensing. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022206. [Google Scholar] [CrossRef]
- Lei, L.; Seol, Y.; Myshakin, E.M. Methane Hydrate Film Thickening in Porous Media. Geophys. Res. Lett. 2019, 46, 11091–11099. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Marín-Moreno, H.; North, L.J.; Falcon-Suarez, I.; Madhusudhan, B.N.; Best, A.I.; Minshull, T.A. Presence and Consequences of Coexisting Methane Gas With Hydrate Under Two Phase Water-Hydrate Stability Conditions. J. Geophys. Res. Solid Earth 2018, 123, 3377–3390. [Google Scholar] [CrossRef]
- Uchida, T.; Lu, H.; Tomaru, H.; Matsumoto, R.; Senoh, O.; Oda, H.; Okada, S.; Delwiche, M.; Dallimore, S.R. Subsurface Occurrence of Natural Gas Hydrate in the Nankai Trough Area: Implication for Gas Hydrate Concentration. Resour. Geol. 2004, 54, 35–44. [Google Scholar] [CrossRef]
- Guerin, G.; Goldberg, D. Sonic Waveform Attenuation in Gas Hydrate-Bearing Sediments from the Mallik 2L-38 Research Well, Mackenzie Delta, Canada. J. Geophys. Res. B Solid Earth 2002, 107, EPM-1. [Google Scholar] [CrossRef]
- Wang, X.; Lee, M.; Wu, S.; Yang, S. Identification of Gas Hydrate Dissociation from Wireline-Log Data in the Shenhu Area, South China Sea. Geophysics 2012, 77, B125–B134. [Google Scholar] [CrossRef]
- Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y. Elevated Gas Hydrate Saturation within Silt and Silty Clay Sediments in the Shenhu Area, South China Sea. J. Geophys. Res. Solid Earth 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Kumar, P.; Collett, T.S.; Vishwanath, K.; Shukla, K.M.; Nagalingam, J.; Lall, M.V.; Yamada, Y.; Schultheiss, P.; Holland, M. Gas-Hydrate-Bearing Sand Reservoir Systems in the Offshore of India: Results of the India National Gas Hydrate Program Expedition 02. Fire Ice 2016, 16, 1–20. [Google Scholar]
- Ryu, B.; Riedel, M. Gas Hydrates in the Ulleung Basin, East Sea of Korea. Terr. Atmos. Ocean. Sci. 2017, 28, 943–963. [Google Scholar] [CrossRef]
- Riedel, M.; Willoughby, E.; Chopra, S. Geophysical Characterization of Gas Hydrates; Society of Exploration Geophysicists: Houston, TX, USA, 2010; ISBN 978-1-56080-218-1. [Google Scholar]
- Holbrook, W.S.; Hoskins, H.; Wood, W.T.; Stephen, R.A.; Lizarralde, D. Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling. Science 1996, 273, 1840–1843. [Google Scholar] [CrossRef]
- Ashi, J.; Tokuyama, H.; Taira, A. Distribution of Methane Hydrate BSRs and Its Implication for the Prism Growth in the Nankai Trough. Mar. Geol. 2002, 187, 177–191. [Google Scholar] [CrossRef]
- Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, W.P.; Hoskins, H.; Stephen, R.A. Seismic Anisotropy in Gas-Hydrate- and Gas-Bearing Sediments on the Blake Ridge, from a Walkaway Vertical Seismic Profile. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A. Seismic Constraints on the Effects of Gas Hydrate on Sediment Physical Properties and Fluid Flow: A Review. Geofluids 2003, 3, 275–289. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Pet. Technol. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Matsushima, J. Attenuation Measurements from Sonic Waveform Logs in Methane Hydrate-Bearing Sediments at the Nankai Trough Exploratory Well off Tokai, Central Japan. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Winters, W.J.; Waite, W.F.; Mason, D.H. Effects of Methane Hydrate on the Physical Properties of Sediments. In Natural Gas Hydrates—ENERGY Resource Potential and Associated Geologic Hazards AAPG Memoir; Collett, T., Johnson, A., Knapp, C., Boswell, R., Eds.; AAPG: McLean, VA, USA, 2009; Volume 89, pp. 714–722. [Google Scholar]
- Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C. Observations Related to Tetrahydrofuran and Methane Hydrates for Laboratory Studies of Hydrate-Bearing Sediments. Geochem. Geophys. Geosyst. 2007, 8, 1–10. [Google Scholar] [CrossRef]
- Jia, J.; Tsuji, T.; Matsuoka, T. Gas Hydrate Saturation and Distribution in the Kumano Forearc Basin of the Nankai Trough. Explor. Geophys. 2017, 48, 137–150. [Google Scholar] [CrossRef]
- Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Jin, Y.; Kida, M.; Suzuki, K.; Fujii, T.; Nagao, J. Permeability of Sediment Cores from Methane Hydrate Deposit in the Eastern Nankai Trough. Mar. Pet. Geol. 2015, 66, 487–495. [Google Scholar] [CrossRef]
- Guerin, G.; Goldberg, D.; Meltser, A. Characterization of in Situ Elastic Properties of Gas Hydrate-Bearing Sediments on the Blake Ridge. J. Geophys. Res. Solid Earth 1999, 104, 17781–17795. [Google Scholar] [CrossRef]
- Nittala, S.; Sain, K.; Nara, D. Seismic Vis-a-Vis Sonic Attenuation in Gas Hydrate Bearing Sediments of Krishna-Godavari Basin, Eastern Margin of India. Geophys. J. Int. 2017, 209, 1195–1203. [Google Scholar] [CrossRef]
- Suzuki, H.; Matsushima, J. Quantifying Uncertainties in Attenuation Estimation at Methane-Hydrate-Bearing Zones Using Sonic Waveform Logs. Geophysics 2013, 78, D339–D353. [Google Scholar] [CrossRef]
- Bauer, K.; Pratt, R.G.; Haberland, C.; Weber, M. Neural Network Analysis of Crosshole Tomographic Images: The Seismic Signature of Gas Hydrate Bearing Sediments in the Mackenzie Delta (NW Canada). Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S.R. Implication of Seismic Attenuation for Gas Hydrate Resource Characterization, Mallik, Mackenzie Delta, Canada. J. Geophys. Res. Solid Earth 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Dvorkin, J.; Uden, R. Seismic Wave Attenuation in a Methane Hydrate Reservoir. Lead. Edge 2004, 23, 730–732. [Google Scholar] [CrossRef]
- Madrussani, G.; Rossi, G.; Camerlenghi, A. Gas Hydrates, Free Gas Distribution and Fault Pattern on the West Svalbard Continental Margin. Geophys. J. Int. 2010, 180, 666–684. [Google Scholar] [CrossRef]
- Rossi, G.; Gei, D.; Böhm, G.; Madrussani, G.; Carcione, J. Attenuation Tomography: An Application to Gas-Hydrate and Free Gas Detection. Geophys. Prospect. 2007, 55, 655–669. [Google Scholar] [CrossRef]
- Pohl, M.; Prasad, M.; Batzle, M.L. Ultrasonic Attenuation of Pure THF-Hydrate. Geophys. Prospect. 2018, 66, 1349–1357. [Google Scholar] [CrossRef]
- Lee, M.W.; Collett, T.S. In-Situ Gas Hydrate Hydrate Saturation Estimated from Various Well Logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 439–449. [Google Scholar] [CrossRef]
- Arun, K.P.; Sain, K.; Kumar, J. Application of Constrained AVO Inversion: 2-D Modelling of Gas Hydrates and Free Gas in Mahanadi Basin, India. J. Nat. Gas Sci. Eng. 2020, 78, 103287. [Google Scholar] [CrossRef]
- Shankar, U.; Ojha, M.; Ghosh, R. Assessment of Gas Hydrate Reservoir from Inverted Seismic Impedance and Porosity in the Northern Hikurangi Margin, New Zealand. Mar. Pet. Geol. 2021, 123, 104751. [Google Scholar] [CrossRef]
- Pandey, L.; Sain, K.; Joshi, A.K. Estimate of Gas Hydrate Saturations in the Krishna-Godavari Basin, Eastern Continental Margin of India, Results of Expedition NGHP-02. Mar. Pet. Geol. 2019, 108, 581–594. [Google Scholar] [CrossRef]
- Dugarov, G.A.; Duchkov, A.A.; Duchkov, A.D.; Drobchik, A.N. Laboratory Validation of Effective Acoustic Velocity Models for Samples Bearing Hydrates of Different Type. J. Nat. Gas Sci. Eng. 2019, 63, 38–46. [Google Scholar] [CrossRef]
- Lee, M.W. Anisotropic Velocities of Gas Hydrate-Bearing Sediments in Fractured Reservoirs; US Geological Survey: Reston, VA, USA, 2009; Volume 5141. [Google Scholar]
- Lee, M. Isotropic, Anisotropic, and Borehole Washout Analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon Well 21–A. USGS Sci. Investig. Rep. 2012, 23, 5046. [Google Scholar]
- Lee, M.W.; Collett, T.S. Characteristics and Interpretation of Fracture-Filled Gas Hydrate—An Example from the Ulleung Basin, East Sea of Korea. Mar. Pet. Geol. 2013, 47, 168–181. [Google Scholar] [CrossRef]
- Lee, M.W.; Collett, T.S. Gas Hydrate Saturations Estimated from Fractured Reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. J. Geophys. Res. Solid Earth 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Joshi, A.K.; Sain, K.; Pandey, L. Gas Hydrate Saturation and Reservoir Characterization at Sites NGHP-02-17 and NGHP-02-19, Krishna Godavari Basin, Eastern Margin of India. Mar. Pet. Geol. 2019, 108, 595–608. [Google Scholar] [CrossRef]
- Shankar, U.; Pandey, A.K. Estimation of Gas Hydrate Saturation Using Isotropic and Anisotropic Modelling in the Mahanadi Basin. J. Earth Syst. Sci. 2019, 128, 163. [Google Scholar] [CrossRef]
- Attias, E.; Amalokwu, K.; Watts, M.; Falcon-Suarez, I.H.; North, L.; Hu, G.W.; Best, A.I.; Weitemeyer, K.; Minshull, T.A. Gas Hydrate Quantification at a Pockmark Offshore Norway from Joint Effective Medium Modelling of Resistivity and Seismic Velocity. Mar. Pet. Geol. 2020, 113, 104151. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, J.M. Elastic Velocity Models for Gas-Hydrate-Bearing Sediments-a Comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Ghosh, R.; Ojha, M. Amount of Gas Hydrate Estimated from Rock Physics Analysis Based on Morphology and Intrinsic Anisotropy in Area B, Krishna Godavari Offshore Basin, Expedition NGHP-02. Mar. Pet. Geol. 2021, 124, 104856. [Google Scholar] [CrossRef]
- Ghosh, R.; Sain, K.; Ojha, M. Effective Medium Modeling of Gas Hydrate-Filled Fractures Using the Sonic Log in the Krishna-Godavari Basin, Offshore Eastern India. J. Geophys. Res. Solid Earth 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Lee, M.W. Biot-Gassmann Theory for Velocities of Gas Hydrate-Bearing Sediments. Geophysics 2002, 67, 1711–1719. [Google Scholar] [CrossRef]
- Lee, M.W.; Collett, T.S. Gas Hydrate and Free Gas Saturations Estimated from Velocity Logs on Hydrate Ridge, Offshore Oregon, USA. Proc. Ocean Drill. Progr. Sci. Results 2005, 204, 1–25. [Google Scholar] [CrossRef]
- Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, W.P. Seismic Velocities for Hydrate-Bearing Sediments Using Weighted Equation. J. Geophys. Res. B Solid Earth 1996, 101, 20347–20358. [Google Scholar] [CrossRef]
- Shankar, U.; Riedel, M. Assessment of Gas Hydrate Saturation in Marine Sediments from Resistivity and Compressional-Wave Velocity Log Measurements in the Mahanadi Basin, India. Mar. Pet. Geol. 2014, 58, 265–277. [Google Scholar] [CrossRef]
- Arun, K.P.; Sain, K.; Kumar, J. Elastic Parameters from Constrained AVO Inversion: Application to a BSR in the Mahanadi Offshore, India. J. Nat. Gas Sci. Eng. 2018, 50, 90–100. [Google Scholar] [CrossRef]
- Chen, J.; Hu, G.; Bu, Q.; Liu, C.; Dong, L.; Wan, Y.; Mao, P.; Guo, Y.; Wang, Z. Elastic Wave Velocities of Hydrate-Bearing Sands Containing Methane Gas Bubbles: Insights from CT-Acoustic Observation and Theoretical Analysis. J. Nat. Gas Sci. Eng. 2021, 88, 103844. [Google Scholar] [CrossRef]
- Gei, D.; Carcione, J.M. Acoustic Properties of Sediments Saturated with Gas Hydrate, Free Gas and Water. Geophys. Prospect. 2003, 51, 141–158. [Google Scholar] [CrossRef]
- Qian, J.; Wang, X.; Collett, T.S.; Guo, Y.; Kang, D.; Jin, J. Downhole Log Evidence for the Coexistence of Structure II Gas Hydrate and Free Gas below the Bottom Simulating Reflector in the South China Sea. Mar. Pet. Geol. 2018, 98, 662–674. [Google Scholar] [CrossRef]
- Shankar, U.; Gupta, D.K.; Bhowmick, D.; Sain, K. Gas Hydrate and Free Gas Saturations Using Rock Physics Modelling at Site NGHP-01-05 and 07 in the Krishna-Godavari Basin, Eastern Indian Margin. J. Pet. Sci. Eng. 2013, 106, 62–70. [Google Scholar] [CrossRef]
- Lodolo, E.; Camerlenghi, A.; Madrussani, G.; Tinivella, U.; Rossi, G. Assessment of Gas Hydrate and Free Gas Distribution on the South Shetland Margin (Antarctica) Based on Multichannel Seismic Reflection Data. Geophys. J. Int. 2002, 148, 103–119. [Google Scholar] [CrossRef]
- Tinivella, U.; Accaino, F.; Camerlenghi, A. Gas Hydrate and Free Gas Distribution from Inversion of Seismic Data on the South Shetland Margin (Antarctica). Mar. Geophys. Res. 2002, 23, 109–123. [Google Scholar] [CrossRef]
- Miyakawa, A.; Saito, S.; Yamada, Y.; Tomaru, H.; Kinoshita, M.; Tsuji, T. Gas Hydrate Saturation at Site C0002, IODP Expeditions 314 and 315, in the Kumano Basin, Nankai Trough. Isl. Arc 2014, 23, 142–156. [Google Scholar] [CrossRef]
- Yi, B.Y.; Lee, G.H.; Kang, N.K.; Yoo, D.G.; Lee, J.Y. Deterministic Estimation of Gas-Hydrate Resource Volume in a Small Area of the Ulleung Basin, East Sea (Japan Sea) from Rock Physics Modeling and Pre-Stack Inversion. Mar. Pet. Geol. 2018, 92, 597–608. [Google Scholar] [CrossRef]
- Yadav, U.S.; Shukla, K.M.; Ojha, M.; Kumar, P.; Shankar, U. Assessment of Gas Hydrate Accumulations Using Velocities Derived from Vertical Seismic Profiles and Acoustic Log Data in Krishna-Godavari Basin, India. Mar. Pet. Geol. 2019, 108, 551–561. [Google Scholar] [CrossRef]
- Dvorkin, J.; Prasad, M.; Sakai, A.; Lavoie, D. Elasticity of Marine Sediments: Rock Physics Modeling. Geophys. Res. Lett. 1999, 26, 1781–1784. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A. Sediments with Gas Hydrates: Internal Structure from Seismic AVO. Geophysics 1998, 63, 1659. [Google Scholar] [CrossRef]
- Terry, D.A.; Knapp, C.C. A Unified Effective Medium Model for Gas Hydrates in Sediments. Geophysics 2018, 83, MR317–MR332. [Google Scholar] [CrossRef]
- Dai, J.; Snyder, F.; Gillespie, D.; Koesoemadinata, A.; Dutta, N. Exploration for Gas Hydrates in the Deepwater, Northern Gulf of Mexico: Part I. A Seismic Approach Based on Geologic Model, Inversion, and Rock Physics Principles. Mar. Pet. Geol. 2008, 25, 830–844. [Google Scholar] [CrossRef]
- Ghosh, R.; Sain, K.; Ojha, M. Estimating the Amount of Gas-Hydrate Using Effective Medium Theory: A Case Study in the Blake Ridge. Mar. Geophys. Res. 2010, 31, 29–37. [Google Scholar] [CrossRef]
- Turco, F.; Azevedo, L.; Grana, D.; Crutchley, G.J.; Gorman, A.R. Characterization of Gas Hydrate Systems on the Hikurangi Margin (New Zealand) through Geostatistical Seismic and Petrophysical Inversion. Geophysics 2021, 86, R825–R838. [Google Scholar] [CrossRef]
- Sriram, G.; Dewangan, P.; Ramprasad, T. Modified Effective Medium Model for Gas Hydrate Bearing, Clay-Dominated Sediments in the Krishna-Godavari Basin. Mar. Pet. Geol. 2014, 58, 321–330. [Google Scholar] [CrossRef]
- Chhun, C.; Kioka, A.; Jia, J.; Tsuji, T. Characterization of Hydrate and Gas Reservoirs in Plate Convergent Margin by Applying Rock Physics to High-Resolution Seismic Velocity Model. Mar. Pet. Geol. 2018, 92, 719–732. [Google Scholar] [CrossRef]
- Berryman, J.G. Mixture Theory for Rock Properties; American Geophysical Union: Washington, DC, USA, 1995; ISBN 0-87590-853-5. [Google Scholar]
- Leurer, K.C. Attenuation in Fine-Grained Marine Sediments; Extension of the Biot-Stoll Model by the “Effective Grain Model” (EGM). Geophysics 1997, 62, 1465–1479. [Google Scholar] [CrossRef]
- Stoll, R.D.; Bryan, G.M. Wave Attenuation in Saturated Sediments. J. Acoust. Soc. Am. 1970, 47, 1440–1447. [Google Scholar] [CrossRef]
- Thomsen, L. Weak Elastic Anisotropy. Geophysics 1986, 51, 1954–1966. [Google Scholar] [CrossRef]
- Qian, J.; Wang, X.; Collett, T.S.; Dong, D.; Guo, Y.; Su, P.; Liang, J. Gas Hydrate Accumulation and Saturations Estimated from Effective Medium Theory in the Eastern Pearl River Mouth Basin, South China Sea. Interpretation 2017, 5, SM33–SM48. [Google Scholar] [CrossRef]
- Sheng, P. Effective-Medium Theory of Sedimentary Rocks. Phys. Rev. B 1990, 41, 4507–4512. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P. Consistent Modeling of the Electrical and Elastic Properties of Sedimentary Rocks. Geophysics 1991, 56, 1236–1243. [Google Scholar] [CrossRef]
- Hornby, B.E.; Schwartz, L.M.; Hudson, J.A. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales. Geophysics 1994, 59, 1570–1583. [Google Scholar] [CrossRef]
- Hu, G.W.; Ye, Y.G.; Zhang, J.; Liu, C.L.; Diao, S.B.; Wang, J.S. Acoustic Properties of Gas Hydrate–Bearing Consolidated Sediments and Experimental Testing of Elastic Velocity Models. J. Geophys. Res. 2010, 115, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; He, T.; Lu, H.; Zhang, Y. Growth Pattern of Dispersed Methane Hydrates in Brine-Saturated Unconsolidated Sediments via Joint Velocity and Resistivity Analysis. J. Nat. Gas Sci. Eng. 2021, 96, 104279. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Chen, J.; Zhang, Y.; Cai, S.; Huang, Y.; Zheng, Y.; Zhao, Y.; Deng, J. A Unified Contactcementation Theory for Gas Hydrate Morphology Detection and Saturation Estimation from Elastic-Wave Velocities. Mar. Pet. Geol. 2020, 113, 104146. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Chen, J.; Riedel, M.; Holland, M.; Zhang, Y.; Cai, S. Quantification of Gas Hydrate Saturation and Morphology Based on a Generalized Effective Medium Model. Mar. Pet. Geol. 2020, 113, 104166. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Zhu, T. Joint Analysis of P-Wave Velocity and Resistivity for Morphology Identification and Quantification of Gas Hydrate. Mar. Pet. Geol. 2020, 112, 104036. [Google Scholar] [CrossRef]
- Singhroha, S.; Chand, S.; Bünz, S. Constraints on Gas Hydrate Distribution and Morphology in Vestnesa Ridge, Western Svalbard Margin, Using Multicomponent Ocean-Bottom Seismic Data. J. Geophys. Res. Solid Earth 2019, 124, 4343–4364. [Google Scholar] [CrossRef]
- Lee, M.W.; Waite, W.F. Amplitude Loss of Sonic Waveform Due to Source Coupling to the Medium. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
Model | Feasibility | Limitation | |
---|---|---|---|
Isotropic | Effective medium model | Various hydrate morphologies. | Unreasonably higher S-wave velocity at high porosities. |
Three-phase Biot extension model | Flexible application in high-porosity marine sediment. | Load-bearing morphology. Setting the consolidation factor | |
Three-phase weighted model | Flexible application to the sediment with any porosity. | Pore-filling hydrate morphology. Setting the weighting factor. | |
Anisotropic | Layered anisotropic model | Transversely isotropic feature. Dip angle of fracture. | Laminated layer is unusual in field investigations. |
Effective medium anisotropic model | Grain displacement morphology. Microstructure of biconnected solid and fluid phases. | Weaker bonding and greater compliance at the edges of different particle alignments. Effective pressure is not considered. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, L.; Liu, B.; Zhang, Y.; Lu, H. Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment. J. Mar. Sci. Eng. 2022, 10, 1076. https://doi.org/10.3390/jmse10081076
Zhan L, Liu B, Zhang Y, Lu H. Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment. Journal of Marine Science and Engineering. 2022; 10(8):1076. https://doi.org/10.3390/jmse10081076
Chicago/Turabian StyleZhan, Linsen, Biao Liu, Yi Zhang, and Hailong Lu. 2022. "Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment" Journal of Marine Science and Engineering 10, no. 8: 1076. https://doi.org/10.3390/jmse10081076
APA StyleZhan, L., Liu, B., Zhang, Y., & Lu, H. (2022). Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment. Journal of Marine Science and Engineering, 10(8), 1076. https://doi.org/10.3390/jmse10081076