Sea Level Change in the Canary Current System during the Satellite Era
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Cazenave, A.; Nerem, R.S. Present-day Sea level change: Observations and causes. Rev. Geophys. 2004, 42, 1077–1083. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Chang. 2019, 9, 705–710. [Google Scholar] [CrossRef]
- Horton, B.P.; Rahmstorf, S.; Engelhart, S.E.; Kemp, A.C. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat. Sci. Rev. 2014, 84, 1–6. [Google Scholar] [CrossRef]
- Vermeer, M.; Rahmstorf, S. Global Sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9, 104008. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Otto-Bliesner, B.L.; Miller, G.H.; Muhs, D.R.; Alley, R.B.; Kiehl, J.T. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 2006, 311, 1747–1750. [Google Scholar] [CrossRef]
- McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Morlighem, M.; Seroussi, H.; Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 2014, 41, 3502–3509. [Google Scholar] [CrossRef]
- Morlighem, M.; Rignot, E.; Mouginot, J.; Seroussi, H.; Larour, E. Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci. 2014, 7, 418–422. [Google Scholar] [CrossRef]
- Cazenave, A.; Dominh, K.; Guinehut, S.; Berthier, E.; Llovel, W.; Ramillien, G.; Larnicol, G. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Chang. 2009, 65, 83–88. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 2009, 36, L07608. [Google Scholar] [CrossRef]
- Cazenave, A.; Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef]
- Willis, J.K.; Chambers, D.P.; Kuo, C.Y.; Shum, C.K. Global sea level rise: Recent progress and challenges for the decade to come. Oceanography 2010, 23, 26–35. [Google Scholar] [CrossRef]
- Leuliette, E.W.; Willis, J.K. Balancing the sea level budget. Oceanography 2011, 24, 122–129. Available online: http://www.jstor.org/stable/24861273 (accessed on 7 July 2022). [CrossRef]
- Barton, E.D.; Arıstegui, J.; Tett, P.; Cantón, M.; Garcıa-Braun, J.; Hernández-León, S.; Wild, K. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 1998, 41, 455–504. [Google Scholar] [CrossRef]
- Hernández-León, S.; Gomez, M.; Arístegui, J. Mesozooplankton in the Canary Current System: The coastal–ocean transition zone. Prog. Oceanogr. 2007, 74, 397–421. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Hernández-León, S.; Barton, E.D. Mesoscale distribution of fish larvae in relation to an upwelling filament off Northwest Africa. Deep Sea Res. Part I 1999, 46, 1969–1984. [Google Scholar] [CrossRef]
- Martín, J.L.; Marrero, M.V.; Del Arco, M.; Garzón, V. Aspectos clave para un plan de adaptación de la biodiversidad terrestre de Canarias al cambio climático. In Los Bosques y la Biodiversidad Frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2015; Chapter 53; pp. 573–580. [Google Scholar]
- Nurse, L.A.; Mclean, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V. Small islands. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1613–1654. [Google Scholar]
- Kelman, I.; Khan, S. Progressive climate change and disasters: Island perspectives. Nat. Hazards 2013, 69, 1131–1136. [Google Scholar] [CrossRef]
- Ablain, M.; Philipps, S.; Picot, N.; Bronner, E. Jason-2 global statistical assessment and cross-calibration with Jason-1. Mar. Geod. 2010, 33, 162–185. [Google Scholar] [CrossRef]
- Ablain, M.; Legeais, J.F.; Prandi, P.; Marcos, M.; Fenoglio-Marc, L.; Dieng, H.B.; Cazenave, A. Satellite altimetry-based sea level at global and regional scales. Surv. Geophys. 2017, 38, 7–31. [Google Scholar] [CrossRef]
- Neuer, S.; Cianca, A.; Helmke, P.; Freudenthal, T.; Davenport, R.; Meggers, H.; Llinás, O. Biogeochemistry and hydrography in the eastern subtropical North Atlantic gyre. Results from the European time-series station ESTOC. Prog. Oceanogr. 2007, 72, 1–29. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast Conserv. 2018, 22, 1001–1015. [Google Scholar] [CrossRef]
- Fotos Aaéreas de Canarias. Available online: https://www.fotosaereasdecanarias.com/ (accessed on 7 July 2022).
- Olcina, J. Turismo y cambio climático: Una actividad vulnerable que debe adaptarse. Investig. Turísticas 2012, 4, 1–32. [Google Scholar] [CrossRef][Green Version]
- Vallis, G.K. El Niño: A chaotic dynamical system? Science 1986, 232, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gesteira, M.; De Castro, M.; Álvarez, I.; Lorenzo, M.N.; Gesteira, J.L.G.; Crespo, A.J.C. Spatio-temporal upwelling trends along the canary upwelling system (1967–2006). Ann. N. Y. Acad. Sci. 2008, 1146, 320–337. [Google Scholar] [CrossRef]
- Barton, A.D.; Pershing, A.J.; Litchman, E.; Record, N.R.; Edwards, K.F.; Finkel, Z.V.; Ward, B.A. The biogeography of marine plankton traits. Ecol. Lett. 2013, 16, 522–534. [Google Scholar] [CrossRef]
- Narayan, N.; Paul, A.; Mulitza, S.; Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 2010, 6, 815–823. [Google Scholar] [CrossRef]
- Pardo, P.C.; Padn, X.A.; Gilcoto, M.; Farina-Busto, L.; Pérez, F.F. Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and ekman transport. Clim. Res. 2011, 48, 231–246. [Google Scholar] [CrossRef]
- Cropper, T.E.; Hanna, E.; Bigg, G.R. Spatial and temporal seasonal trends in coastal upwelling off northwest africa, 1981–2012. Deep Sea Res. Part I 2014, 86, 94–111. [Google Scholar] [CrossRef]
- Garín-Muñoz, T.; Montero-Martín, L.F. Tourism in the Balearic Islands: A dynamic model for international demand using panel data. Tour. Manag. 2007, 28, 1224–1235. [Google Scholar] [CrossRef]
- Peña-Alonso, C.; Pérez-Chacón, E.; Hernández-Calvento, L.; Ariza, E. Assessment of scenic, natural and cultural heritage for sustainable management of tourist beaches. A case study of Gran Canaria island (Spain). Land Use Policy 2018, 72, 35–45. [Google Scholar] [CrossRef]
- Gouzenes, Y.; Léger, F.; Cazenave, A.; Birol, F.; Bonnefond, P.; Passaro, M.; Benveniste, J. Coastal sea level rise at Senetosa (Corsica) during the Jason altimetry missions. Ocean Sci. 2020, 16, 1165–1182. [Google Scholar] [CrossRef]
- Ruiz-Etcheverry, L.A.; Saraceno, M. Sea level trend and fronts in the South Atlantic Ocean. Geosciences 2020, 10, 218. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 2013, 5, 21–46. [Google Scholar] [CrossRef]
- Cazenave, A.; Meyssignac, B.; Ablain, M.; Balmaseda, M.; Bamber, J.; Barletta, V.; Wouters, B. Global sea-level budget 1993-present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar] [CrossRef]
- Legeais, J.-F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef]
- Iglesias, I.; Lorenzo, M.N.; Lázaro, C.; Fernandes, M.J.; Bastos, L. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns. Sci. Total Environ. 2017, 609, 861–874. [Google Scholar] [CrossRef]
- Kostianaia, E.A.; Kostianoy, A.G. Regional Climate Change Impact on Coastal Tourism: A Case Study for the Black Sea Coast of Russia. Hydrology 2021, 8, 133. [Google Scholar] [CrossRef]
- Meli, M.; Olivieri, M.; Romagnoli, C. Sea-Level Change along the Emilia-Romagna Coast from Tide Gauge and Satellite Altimetry. Remote Sens. 2021, 13, 97. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Calafat, F.M.; Woppelmann, G. Sea level changes at Tenerife Island (NE Tropical Atlantic) since 1927. J. Geophys. Res. Oceans 2013, 118, 4899–4910. [Google Scholar] [CrossRef]
- Valdés, L.; Déniz-González, I. Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem; IOC-UNESCO: Paris, France, 2015; Available online: http://hdl.handle.net/1834/9135 (accessed on 7 July 2022).
Average | North | Centre | South | Upwelling | |
---|---|---|---|---|---|
Average | 3.483 | 3.509 | 3.586 | 3.468 | 3.351 |
Max | 12.226 | 13.942 | 13.303 | 14.883 | 15.096 |
Min | −6.327 | −7.604 | −6.417 | −7.197 | −6.120 |
Slope | 0.024 | 0.024 | 0.026 | 0.025 | 0.023 |
Offset | −0.502 | 0.387 | −0.637 | −0.598 | 0.462 |
Open Ocean | Upwelling | |||||||
---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | |
Mean | 0.678 | 0.212 | 5.881 | 7.357 | 0.763 | 0.183 | 2.934 | 9.697 |
Max | 7.195 | 5.054 | 11.071 | 11.816 | 7.390 | 4.837 | 8.157 | 15.090 |
Min | −4.534 | −5.614 | −0.610 | 2.073 | −2.900 | −3.923 | −3.417 | 4.113 |
Slope | 0.348 | 0.279 | 0.270 | 0.277 | 0.197 | 0.297 | 0.336 | 0.279 |
Offset | −4.196 | −3.539 | 2.096 | 3.481 | −1.999 | −3.980 | −1.764 | 5.794 |
Open Ocean | Upwelling | ||||||
---|---|---|---|---|---|---|---|
NAO | AMO | CHL | SST | NAO | AMO | CHL | SST |
−0.1341 | 0.3542 | −0.3566 | 0.7525 | −0.0952 | 0.3303 | −0.4687 | 0.6522 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrero-Betancort, N.; Marcello, J.; Rodríguez-Esparragón, D.; Hernández-León, S. Sea Level Change in the Canary Current System during the Satellite Era. J. Mar. Sci. Eng. 2022, 10, 936. https://doi.org/10.3390/jmse10070936
Marrero-Betancort N, Marcello J, Rodríguez-Esparragón D, Hernández-León S. Sea Level Change in the Canary Current System during the Satellite Era. Journal of Marine Science and Engineering. 2022; 10(7):936. https://doi.org/10.3390/jmse10070936
Chicago/Turabian StyleMarrero-Betancort, Nerea, Javier Marcello, Dionisio Rodríguez-Esparragón, and Santiago Hernández-León. 2022. "Sea Level Change in the Canary Current System during the Satellite Era" Journal of Marine Science and Engineering 10, no. 7: 936. https://doi.org/10.3390/jmse10070936
APA StyleMarrero-Betancort, N., Marcello, J., Rodríguez-Esparragón, D., & Hernández-León, S. (2022). Sea Level Change in the Canary Current System during the Satellite Era. Journal of Marine Science and Engineering, 10(7), 936. https://doi.org/10.3390/jmse10070936