# Hydrodynamic Analysis of Tidal Current Turbine under Water-Sediment Conditions

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

#### 2.1. Particle Phase Model

#### 2.2. Fluid Phase Model

#### 2.3. Blade Element Momentum (BEM) Theory

_{t}is the tip loss factor, F

_{r}is the root loss factor, and ${r}_{\mathrm{h}}$ is the radius of the hub.

#### 2.4. Airfoil

#### 2.4.1. Airfoil Lift Coefficient

#### 2.4.2. Airfoil Drag Coefficient

## 3. Computational Details

#### 3.1. Case Description

#### 3.2. Model Description and Boundary Conditions

#### 3.3. Computational Grids and Grid Independence Study

Mesh Number | Total Number of Cells | Lift Coefficient | Drag Coefficient |
---|---|---|---|

1 | 1,936,784 | 0.92197 | 0.01298 |

2 | 2,577,494 | 0.92566 | 0.01287 |

3 | 3,239,204 | 0.92825 | 0.01282 |

4 | 3,921,914 | 0.92883 | 0.01281 |

**Figure 6.**Computational mesh used in the simulation: (

**a**) domain volume mesh; (

**b**) airfoil surface mesh.

#### 3.4. Numerical Method

^{−5}. The interaction between the discrete and the continuous phases is considered, and the number of continuous phase iterations per DPM iteration is set as 10.

#### 3.5. CFD-DPM Model Validation

#### 3.5.1. Turbulence Model Verification

#### 3.5.2. DPM Model Verification

#### 3.5.3. BEM Model Verification

## 4. Results and Discussion

#### 4.1. Effect of Particle Properties on Airfoil Lift Coefficient

#### 4.2. Effect of Particle Properties on the Airfoil Drag Coefficient

#### 4.3. Effect of Sand on the Power of the 120 kW Tidal Current Turbine

## 5. Conclusions

- (1)
- The CFD-DPM model accurately simulates the airfoil lift and drag coefficients.
- (2)
- When the particle diameter is small, the airfoil lift coefficient surpasses the particle-free lift coefficient. The lift coefficient increases as the particle concentration increases. When the particle diameter and the particle concentration are 20 μm and 100 g/L, respectively, the rotor capture power is increased by at most 2.932% compared to the particle-free case.
- (3)
- When the particle diameter is large, the airfoil lift coefficient is less than the non-particle lift coefficient. The lift coefficient decreases as the particle concentration increases. When the particle diameter and the particle concentration are 2500 μm and 100 g/L, respectively, the 120 kW tidal current turbine power is reduced by at most 21.4% compared to the particle-free case.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

Variable Symbols | Definitions |

${U}_{p-fn}$ | The difference between the particle velocity and the particle-free fluid velocity along the particle trajectory of the same Particle ID |

${U}_{fp-fn}$ | The difference between the fluid velocity and the particle-free fluid velocity along the particle trajectory of the same Particle ID |

Time (in the Figure) | Time beginning from the particle injection surface |

Path length (in the Figure) | Path length, defined as the path length of the particle trajectory, which is computed from the particle injection surface |

CFD | Computational Fluid Dynamics |

BEM | Blade Element Momentum |

DEM | Discrete Element Method |

DPM | Discrete Phase Model |

## References

- Myers, L.; Bahaj, A.S. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renew. Energy
**2005**, 30, 1713–1731. [Google Scholar] [CrossRef] - Li, D.; Wang, S.; Yuan, P. An overview of development of tidal current in China: Energy resource, conversion technology and opportunities. Renew. Sustain. Energy Rev.
**2010**, 14, 2896–2905. [Google Scholar] [CrossRef] - Wang, S.; Yuan, P.; Li, D.; Jiao, Y. An overview of ocean renewable energy in China. Renew. Sustain. Energy Rev.
**2011**, 15, 91–111. [Google Scholar] [CrossRef] - Wu, B.; Zhang, X.; Chen, J.; Xu, M.; Li, S.; Li, G. Design of high-efficient and universally applicable blades of tidal stream turbine. Energy
**2013**, 60, 187–194. [Google Scholar] [CrossRef] - Gu, Y.J.; Yin, X.X.; Liu, H.W.; Li, W.; Lin, Y.G. Fuzzy terminal sliding mode control for extracting maximum marine current energy. Energy
**2015**, 90, 258–265. [Google Scholar] [CrossRef] - Gupta, V.; Young, A.M. A one-dimensional model for tidal array design based on three-scale dynamics. J. Fluid. Mesh.
**2017**, 825, 651–676. [Google Scholar] [CrossRef][Green Version] - Attene, F.; Balduzzi, F.; Bianchini, A.; Campobasso, M.S. Using experimentally validated Navier-Stokes CFD to minimize tidal stream turbine power losses due to wake/turbine interactions. Sustainability
**2020**, 12, 8768. [Google Scholar] [CrossRef] - Wang, X.K.; Shao, X.J.; Li, D.X. Fundamental River Mechanics; China Water & Power Press: Beijing, China, 2002; Available online: https://www.waterpub.com.cn (accessed on 8 April 2021).
- Yu, W.C.; Yue, H.Y. Position of runoff and sediment of Yangtze River in world rivers. J. Yangtze River Sci. Res. Inst.
**2002**, 6, 13–16. [Google Scholar] - Zhang, R.J. River Sediment Dynamics, 2nd ed.; China Water & Power Press: Beijing, China, 1998; Available online: https://www.waterpub.com.cn (accessed on 8 April 2021).
- Ministry of Water Resource of the People’s Republic of China. China River Sediment Bulletin, China, Water & Power Press; Ministry of Water Resource of the People’s Republic of China: Beijing, China, 2019.
- Zuo, L.Q.; Lu, Y.J.; Ji, R.Y. Back silting law of the mouth bar channel in Southern Zhejiang muddy coastal estuaries: Case study of Aojiang Estuary. J. Basic Sci. Eng.
**2014**, 22, 88–105. [Google Scholar] - Liu, L.Y. Suspended sediment simulation and numerical study of water purification scheme in turbid Zhoushan archipelago. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016. [Google Scholar]
- Fraenkel, P.L. Power from marine currents. Proc. Inst. Mech. Eng. Part A J. Power Energy
**2002**, 216, 1–14. [Google Scholar] [CrossRef] - Ng, K.W.; Lam, W.H.; Ng, K.C. 2002–2012: 10 years of research progress in horizontal-axis marine current turbines. Energies
**2013**, 6, 1497–1526. [Google Scholar] [CrossRef][Green Version] - Batten, W.M.J.; Bahaj, A.S.; Molland, A.F. The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy
**2007**, 33, 1085–1096. [Google Scholar] [CrossRef] - Song, S.; Demirel, Y.K.; Atlar, M.; Shi, W.C. Prediction of the fouling penalty on the tidal turbine performance and development on its mitigation measures. Appl. Energy
**2020**, 276, 115498. [Google Scholar] [CrossRef] - Walker, J.M.; Flack, K.A.; Lust, E.E. Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew. Energy
**2014**, 66, 257–267. [Google Scholar] [CrossRef] - Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Guo, M.S.; Li, H.Z. Handbook of Fluidization; Chemical Industry Press Co., Ltd.: Beijing, China, 2008; Available online: https://www.cip.com.cn/ (accessed on 20 October 2021).
- Sun, L.; Ma, C.; Song, P.; Zhang, H. Quantitative computational fluid dynamic analyses of oil droplets deposition on vaneless diffusor walls of a centrifugal compressor. Energy Sci. Eng.
**2020**, 8, 910–921. [Google Scholar] [CrossRef] - Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique
**1979**, 29, 47–65. [Google Scholar] [CrossRef] - Zhao, H.; Zhao, Y. CFD-DEM simulation of pneumatic conveying in a horizontal pipe. Powder Technol.
**2020**, 373, 58–72. [Google Scholar] [CrossRef] - Wang, K.; Li, X.; Wang, Y.; He, R. Numerical investigation of the erosion behavior in elbows of petroleum pipelines. Powder Technol.
**2017**, 314, 490–499. [Google Scholar] [CrossRef] - Zhou, M.M.; Wang, S.; Kuang, S.B.; Luo, K.; Fan, J.R. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technol.
**2019**, 354, 893–905. [Google Scholar] [CrossRef] - Peng, W.S.; Cao, X.W. Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow. J. Nat. Gas Sci. Eng.
**2016**, 30, 455–470. [Google Scholar] [CrossRef] - Peng, W.S.; Cao, X.W. Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow. Powder Technol.
**2016**, 294, 266–279. [Google Scholar] [CrossRef] - Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech.
**1972**, 55, 193–208. [Google Scholar] [CrossRef] - Avi, U.; Avi, L. Flow characteristics of coarse particles in horizontal hydraulic conveying. Powder Technol.
**2018**, 58, 302–321. [Google Scholar] - Saffman, P.G. The lift on a small sphere in a slow shear flow. J. Fluid. Mesh.
**1965**, 22, 385–400. [Google Scholar] [CrossRef][Green Version] - Haider, A.; Levenspiel, O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol.
**1989**, 58, 63–70. [Google Scholar] [CrossRef] - Fatahian, H.; Salarian, H.; Nimvari, M.E.; Khaleghinia, J. Numerical simulation of the effect of rain on aerodynamic performance and aeroacoustic mechanism of an airfoil via a two-phase flow approach. SN Appl. Sci.
**2020**, 2, 867. [Google Scholar] [CrossRef] - Zhou, Z.Y.; Kuang, S.B.; Chu, K.W.; Yu, A.B. Discrete particle simulation of particle–fluid flow: Model formulations and their applicability. J. Fluid Mech.
**2010**, 661, 482–510. [Google Scholar] [CrossRef] - Karimi, S.; Shirazi, S.A.; McLaury, B.S. Predicting fine particle erosion utilizing computational fluid dynamics. Wear
**2017**, 376, 1130–1137. [Google Scholar] [CrossRef] - Ahmadi, M.P.M.N. Particle Deposition in a Turbulent Channel Flow. In Fluids Engineering Division Summer Meeting; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. J. AIAA
**1994**, 32, 1598–1605. [Google Scholar] [CrossRef][Green Version] - Li, W.; Zhou, H.B.; Liu, H.W.; Lin, Y.G.; Xu, Q.K. Review on the blade design technologies of tidal current turbine. Renew Sustain. Energy Rev.
**2016**, 63, 414–422. [Google Scholar] [CrossRef] - Liu, H.W.; Zhou, H.B.; Lin, Y.G.; Li, W.; Gu, H.G. Design and test of 1/5th scale horizontal axis tidal current turbine. China Ocean Eng.
**2016**, 30, 407–420. [Google Scholar] [CrossRef] - Burton, T.; Jenkins, N.; Sharpe, D.; Bossangi, E. Wind Energy Handbook; John Wiley & Sons, Ltd.: Chichester, UK, 2001. [Google Scholar]
- DNV GL. Tidal Bladed Theory Manual; Energy Headquarters: Arnhem, The Netherlands, 2012. [Google Scholar]
- Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual; National Renewable Energy Lab: Golden, CO, USA, 2005.
- Gu, Y.J.; Liu, H.W.; Li, W.; Lin, Y.G.; Li, Y.J. Integrated design and implementation of 120-kW horizontal-axis tidal current energy conversion system. Ocean. Eng.
**2018**, 158, 338–349. [Google Scholar] [CrossRef] - Yao, X.J.; Tian, D.; Song, J. Wind Generator’s Design and Manufacture; China Machine Press: Beijing, China, 2012; Available online: https://www.cmpedu.com (accessed on 20 October 2021).
- Ji, B.B.; Chen, J.P. ANSYS ICEM CFD Detailed Explanation of Grid Partition Technology Example; China Water & Power Press: Beijing, China, 2015. [Google Scholar]
- Ansys Fluent Inc. ANSYS FLUENT User Guide; Ansys Fluent Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- Lewthwaite, M.T.; Amaechi, C.V. Numerical investigation of winglet aerodynamics and dimple effect of NACA 0017 airfoil for a freight aircraft. Inventions
**2022**, 7, 31. [Google Scholar] [CrossRef] - Jia, W.; Yan, J. Pressure drop characteristics and minimum pressure drop velocity for pneumatic conveying of polyacrylamide in a horizontal pipe with bends at both ends. Powder Technol.
**2020**, 372, 192–203. [Google Scholar] [CrossRef] - Farokhipour, A.; Mansoori, Z.; Rasoulian, M.A. Study of particle mass loading effects on sand erosion in a series of fittings. Powder Technol.
**2020**, 373, 118–141. [Google Scholar] [CrossRef] - Li, D.S.; Wang, Y.; Guo, X.D.; Li, Y.R.; Li, R.N. Effects of particle shape on erosion characteristic and critical particle Stokes number of wind turbine airfoil. Trans. Chin. Soc. Agric. Eng.
**2019**, 35, 224–231. [Google Scholar] - Li, Y.R.; Jin, J.J.; Han, W.; Li, D.S.; Zheng, L.K. Motion characteristics of diffuser diameter particles in flow field of S809 airfoil and effect of its aerodynamic performance. Acta Enegrgiae Sol. Sin.
**2018**, 39, 2923–2928. [Google Scholar] - Li, R.N.; Zhao, Z.X.; Li, D.S.; Li, Y.R. Effects of wind sand on flow around airfoil of wind turbine and its aerodynamic performance. Trans. Chin. Soc. Agric. Eng.
**2018**, 34, 205–211. [Google Scholar]

**Figure 3.**Photo of the sea trial in Zhoushan: (

**a**) 120 kW tidal current turbine; (

**b**) seawater with sediment.

**Figure 4.**Blade profile of the 120 kW tidal current turbine: (

**a**) blade profile; (

**b**) detailed airfoil element section.

**Figure 8.**Erosion diagram of the 120 kW tidal current turbine: (

**a**) the actual erosion diagram under real sea conditions; (

**b**) the simulated erosion cloud diagram at 1.8 m/s (blade contains 30 airfoil elements, the airfoil element at the tip is named “airfoil 30”, and the others are named in sequence. Additionally,

**Er**represents the average erosion rate).

**Figure 10.**Comparison of the simulated turbine power with the experimental data at different flow velocities.

**Figure 11.**The airfoil lift coefficient with the particle diameter under different particle concentrations.

**Figure 12.**The particle trajectories and the fluid streamlines when the particle diameter is 20 $\mathsf{\mu}\mathrm{m}$: (

**a**) the particle trajectories; (

**b**) the fluid streamlines.

**Figure 13.**The particle velocity and the fluid velocity along the trajectory of Particle ID = 5 (particle diameter = 20 $\mathsf{\mu}\mathrm{m}$).

**Figure 14.**The particle velocity and the particle-free fluid velocity along the trajectory of Particle ID = 5 (particle diameter = 2500 $\mathsf{\mu}\mathrm{m}$).

**Figure 16.**The particle velocities and the particle-free fluid velocities along the trajectory of particle ID = 5 under different particle concentrations.

**Figure 17.**The particle trajectories under different particle concentrations: (

**a**) 0.5 g/L; (

**b**) 1 g/L; (

**c**) 1.5 g/L; (

**d**) 2 g/L.

**Figure 18.**The airfoil drag coefficient with the particle diameter under different particle concentrations.

**Figure 19.**The velocities of fluid along the trajectories of Particle ID = 23,000 and Particle ID = 45,000 (1: Particle ID = 45,000 without particles; 2: Particle ID = 23,000 without particles; 3: Particle ID = 45,000 (particle diameter = 2500 $\mathsf{\mu}\mathrm{m}$); 4: Particle ID = 23,000 (particle diameter = 2500 $\mathsf{\mu}\mathrm{m}$)).

**Figure 21.**The variation curves of lift and drag coefficients of airfoil 28 with particle concentration when the particle diameter is 2500 $\mathsf{\mu}\mathrm{m}$: (

**a**) lift coefficient; (

**b**) drag coefficient.

Design Parameters | Value |
---|---|

Rated tidal current velocity | 2 m/s |

Rated rotor rotating velocity | 20 r/min |

Blade number | 3 |

Rotor radius | 5 m |

Hub radius | 0.6 m |

Optimal tip speed ratio | 6 |

Distance Along Pitch Axis (m) | Chord (m) | Twist (°) | Thickness (%) |
---|---|---|---|

0 | 0.460 | 22.5 | 100 |

0.4 | 0.622 | 22.45 | 68.1 |

0.8 | 0.872 | 18.27 | 36.1 |

1.25 | 0.718 | 12.62 | 31.1 |

1.7 | 0.577 | 9.03 | 27.6 |

2.2 | 0.469 | 6.37 | 25 |

2.8 | 0.391 | 4.19 | 22.2 |

3.4 | 0.326 | 2.61 | 21 |

3.8 | 0.268 | 1.64 | 21 |

4.2 | 0.241 | 0.54 | 21 |

4.4 | 0.152 | 0 | 16 |

Minimum Diameter | Maximum Diameter | Median Diameter | Mean Diameter |
---|---|---|---|

$5\times {10}^{-7}$ m | $2.84\times {10}^{-4}$ m | $4.2\times {10}^{-5}$ m | $1.2\times {10}^{-5}$ m |

Liquid Property | |

Density, (Kg/m^{3}) | 1040 |

Temperature, (°C) | 25 |

Viscosity, (Kg/(m s)) | 0.00115 |

Solid Property | |

Material | sand |

Density, (Kg/m^{3}) | 2650 |

Operating Parameters | d_{P} $\left(\mathsf{\mu}\mathbf{m}\right)$ | C_{P} (g/L) | α (°) | c (m) | U (m/s) |
---|---|---|---|---|---|

Effect of particle properties | 20∼3000 | 0.5~2 | 6 | 1 | 16 |

**Table 7.**The power of the 120 kW tidal current turbine at different particle concentrations when the particle diameter is 2500 $\mathsf{\mu}\mathrm{m}$.

Particle Concentration/(kg/m^{3}) | Power/(W) | (P_{0} *-P)/P_{0} * |
---|---|---|

0 | 96,710 | 0 |

2 | 96,206 | 0.521% |

5 | 95,432 | 1.32% |

20 | 92,277 | 4.58% |

40 | 87,674 | 9.34% |

80 | 80,874 | 17.5% |

100 | 76,020 | 21.4% |

_{0}: rotor capture power without particles.

**Table 8.**The power of the 120 kW tidal current turbine at different particle concentrations when the particle diameter is 20 $\mathsf{\mu}\mathrm{m}$.

Particle Concentration/(kg/m^{3}) | Power/(W) | (P_{0} *-P)/P_{0} * |
---|---|---|

0 | 96,710 | 0 |

2 | 96,764 | 0.0558% |

5 | 96,835 | 0.129% |

20 | 97,176 | 0.482% |

40 | 97,411 | 0.725% |

80 | 98,397 | 1.744% |

100 | 99,546 | 2.932% |

_{0}: rotor capture power without particles.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gao, Y.; Liu, H.; Lin, Y.; Gu, Y.; Ni, Y. Hydrodynamic Analysis of Tidal Current Turbine under Water-Sediment Conditions. *J. Mar. Sci. Eng.* **2022**, *10*, 515.
https://doi.org/10.3390/jmse10040515

**AMA Style**

Gao Y, Liu H, Lin Y, Gu Y, Ni Y. Hydrodynamic Analysis of Tidal Current Turbine under Water-Sediment Conditions. *Journal of Marine Science and Engineering*. 2022; 10(4):515.
https://doi.org/10.3390/jmse10040515

**Chicago/Turabian Style**

Gao, Yanjing, Hongwei Liu, Yonggang Lin, Yajing Gu, and Yiming Ni. 2022. "Hydrodynamic Analysis of Tidal Current Turbine under Water-Sediment Conditions" *Journal of Marine Science and Engineering* 10, no. 4: 515.
https://doi.org/10.3390/jmse10040515